Final Conference Program

The 19th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems

VIRTUAL 2020

Live Virtual Events July 21 – 23, 2020

WELCOME LETTER

On behalf of the organizing committee, it is our great pleasure to welcome you to ITherm 2020 Virtual, the leading international conference for scientific and engineering exploration of thermal, thermo-mechanical and emerging technology issues associated with electronic devices from the die to the data center level. This is an unusual year for ITherm, as it is for all of us. Converting ITherm 2020 from an in-person to a virtual event has touched all the aspects of the conference from planning and organizing to participating and presenting.

ITherm 2020 Virtual is packed with many live and recorded activities. Join us from 12:00-4:00 PM Eastern on July 21st-23rd for daily live events including: 3 Keynote Talks addressing the future of the 3D system integration technology, ethics in AI, and thermal management challenges of aircraft electrification; an Invited Presentation by the recipient of the Richard Chu ITherm Award for Excellence, 3 Technology-Talk sessions providing deep dive talks on high profile topics; and the returning joint ASME K-16 / IEEE EPS Student Design Challenge on additive manufacturing of heat sinks, sponsored by GE. Recorded events will be available from July 21st till August 19th, and include over 180 technical papers in 50 sessions in 4 Technical Tracks; 60+ Student Posters as a highly engaging forum on the latest research; a joint ECTC/ITherm Diversity Panel and Heterogeneous Integration Roadmap workshop.

Many thanks go to everyone who has contributed to the success of ITherm 2020 Virtual. We recognize that this year there was a lot more work than any of us would wish to handle. Thus, taking time and contributing to ITherm over and above regular everyday responsibilities is highly appreciated. In particular, we would like to thank our track chairs and co-chairs, session chairs/co-chairs, technology-talks organizers, and many others. Last, but not least, the support of our Executive Committee is highly appreciated. A complete list of key contributors is listed later in this program.

We have sought sponsorships to support the expanded student participation with the opportunities to present their work in the virtual poster presentations, as well as other activities at the conference. ITherm sponsorship support comes from both industry and academia. Our thanks go out to each of this year's sponsors for the critical role their sponsorship provides to ITherm. Please visit their websites and published materials, benefit from exchange of information, and thank them for their sponsorship.

Thank you for participating in the ITherm 2020 Virtual conference and making it possible by your virtual attendance. Whether this is your first time or if you attended ITherm before, this year's virtual format is new for everybody. Interact with your fellow attendees using the live chat feature of the online conference platform or connect with them through the ITherm <u>LinkedIn</u> group. Regardless of whether this is your first time with us or not, we will endeavor to have you enjoy the virtual conference and come back to attend again in the future. We hope that you enjoy the wide variety of technical venues that ITherm 2020 Virtual offers.

ITherm 2021 will be held in San Diego, CA on June 1-4, 2021, and we hope that you mark your calendars to be there as well.

Best wishes,

Vadim Gektin General Chair

Justin A. Weibel Program Chair

Dustin W. Demetriou Vice Program Chair

Satish Kumar Communications Chair

Sponsored by the IEEE's Electronics Packaging Society (EPS), ITherm is an international conference for scientific and engineering exploration of thermal, thermomechanical and emerging technology issues associated with electronic devices, packages and systems (<u>http://ieee-itherm.net</u>). The ITherm 2020 Virtual Conference will be held July 21 – 23, 2020. Registered attendees will be able to join live each day of the conference for one-time plenary events with options to interact with the presenters from 12:00 PM – 4:00 PM Eastern Daylight Time (EDT). In addition to these live events, registered ITherm attendees will receive a copy of the conference proceedings and be able to view all of the technical paper sessions, as well as elevator pitches of the student posters, at their convenience for a period of 4 weeks after the conference opens.

TABLE OF CONTENTS

Welcome Letter2
Virtual Program Overview4
General Information5
Sponsors, Exhibitors, and Partners6
ITherm LinkedIn Group6
Conference Organization Committee7
Conference Executive Committee 10
Conference Keynotes 11
2020 Richard Chu ITherm Award for Excellence 14
Student Heat Sink Design Challenge15

Technology-Talk Sessions16
Heterogeneous Integration Roadmap Workshop19
Therm/ECTC Diversity Panel 20
Student Poster & Networking Session 20
List of Student Posters21
Technical Tracks, Sessions, & Presentations 25
Last Year's Best Papers (ITherm 2019)46
Last Year's Best Posters (ITherm 2019)47
Paper Reviewers 48
Therm 2021 Announcement 49

LIVE VIRTUAL EVENTS (July 21st -23rd)

- **3 Keynote Talks** covering the areas of ethics in artificial intelligence, 3D system integration, and aircraft electrification and thermal management
- 3 Technology Talk Sessions providing deep dive talks on high profile topics
- Student Heat Sink Design Challenge
- Richard Chu ITherm Award for Excellence and Invited Presentation
- Announcement of the ITherm 2020 Best Paper Awards

RECORDED CONTENT (until August 19)

- Access to over 180 Technical Papers and Recorded Session Presentations from 4 Technical Tracks including Component-Level Thermal Management (TI), System-Level Thermal Management (TII), Mechanics & Reliability (M), and Emerging Technologies & Fundamentals (E)
- **60+ Student Posters** with recorded elevator pitches showcasing students' latest research
- ECTC/ITherm Joint Diversity Panel
- Heterogeneous Integration Roadmap (HIR) Workshop

VIRTUAL PROGRAM OVERVIEW

Live Virtual Events								
All Times Eastern	Day 1 (Tues, July 21)	Day 2 (Wed, July 22)	Day 3 (Thurs, July 23)					
11:30 - Noon	Connect Live!							
Noon - 1:00	Keynote 1 Beena Ammanath (Deloitte)	Keynote 2 Eric Beyne (imec)	Keynote 3 Charles Lents (Raytheon Technologies)					
	"Future of Work Depends on Ethics in AI"	"The Future of 3D System Integration Technology"	"Aircraft Electrification Feasibility and Thermal Mangement Challenges"					
1:00-1:30		Break						
1:30 - 2:30	Richard Chu ITherm Award For Excellence Invited Presentation by the 2020 Awardee: Ravi Mahajan (Intel)	Tech Talk Session 2: Al in Thermal Management Mark D. Fuge (University of Maryland) R. Radermacher, V. Aute (University of Maryland)	Joint ASME K-16 / IEEE EPS Student Design Challenge (1:30-2:45) Sponsored by GE					
2:30 - 3:00	Break							
3:00 - 4:00	Tech Talk Session 1: Heterogeneous Integration Amr S. Helmy (University of Toronto) Bill Bottoms (IEEE EPS and 3MTS)	Tech Talk Session 3: Transient Thermal Management Neera Jain (Purdue) Darin Sharar (US Army Research Labs)	Best Paper Awards and Closing (3:15-4:00)					
Recorded Content Available July 21 st to Aug 19 th								
Poor								
Recorded Session Presentations from 1804 Papers across 4 Technical Tracks								
ECTC/ITherm Joint Diversity Panel								
Heterogeneous Integration Roadmap (HIR) Workshop								

GENERAL INFORMATION

REGISTRATION

Registration is now open for ITherm 2020 Virtual: http://www.cvent.com/d/knq090

The ITherm 2020 Virtual conference registration includes access to all virtual live and recorded events and an electronic copy of the conference proceedings. The registration fees are:

IEEE Member Fee: \$100 Non Member Fee: \$150 Life Member Fee: \$50 Student Fee: \$50

Note that the e-mail entered upon registration will be granted access to the live virtual events. *Please register at least 24 hours prior to the event to ensure that your access credentials are valid.* Registration will remain open through the close of the conference on Aug 19th.

ON24 VIRTUAL CONFERENCE PLATFORM

We are working with IEEE Meetings, Conference, and Events (MCE) to bring the event to you using the ON24 virtual conference environment. Links to the ON24 platform content (both live events and recorded content) will be accessible through the ITherm website:

https://www.ieee-itherm.net/itherm/conference/ITherm-2020-Virtual

For more information regarding system and bandwidth requirements, browser compatibility, and to test your system in advance of the event, please visit the ON24's Event Help Guide: <u>https://event.on24.com/view/help/</u>

CONFERENCE Q&A FORMAT

The ITherm 2020 Virtual Conference will have multiple different mechanisms for engaging the speakers and authors with your questions, depending on the event type.

- Live Keynotes and Richard Chu ITherm Award Lecture: Submit your questions during the presentation to be addressed by the speakers live at the end of each talk
- Tech Talks and Student Heat Sink Design Competition: Interactive live chat with the invited speakers
- *Recorded Session Presentations*: Post questions to the session message board, which will be monitored and addressed by the Authors throughout the event period

SPONSORS & VENDOR EXHIBITS

For more details on our ITherm 2020 Sponsors, Exhibitors, and Partners, please visit: http://ieee-itherm.net/itherm/conference/sponsors and exhibitors

SPONSORS

EXHIBITORS

PARTNER CONFERENCES

THERMINIC

EPTC 2020

ITherm LINKEDIN GROUP

You can follow ITherm activities at LinkedIn: https://www.linkedin.com/groups/8650280

CONFERENCE ORGANIZATION COMMITTEE

ORGANIZATION COMMITTEE						
General Chair	Vadim Gektin	NUVIA				
Program Chair	Justin A. Weibel	Purdue University				
Vice Program Chair	Dustin W. Demetriou	IBM Corporation				
Communications Chair	Satish Kumar	Georgia Institute of Technology				
COMPONENT-LEVEL THERMAL MAD	NAGEMENT TRACK					
Chair	Kamal Sikka	IBM Corporation				
Co-Chair	Tim Fisher	UCLA				
Co-Chair	Stephanie Allard	IBM Corporation				
Co-Chair	Jin Yang	Intel Corporation				
SYSTEM-LEVEL THERMAL MANAGE	MENT TRACK					
Chair	Ashish Gupta	Intel Corporation				
Co-Chair	Lauren Boteler	Army Research Laboratory				
Co-Chair	Chandra Mohan Jha	Intel Corporation				
EMERGING TECHNOLOGIES & FUND	DAMENTALS TRACK					
Chair	Amir H. Shooshtari	University of Maryland				
Co-Chair	Amy Marconnet	Purdue University				
Co-Chair	Sukwon Choi	Penn State University				
MECHANICS & RELIABILITY TRACK						
Chair	Pradeep Lall	Auburn University				
Co-Chair	Przemyslaw Gromala	Bosch				
Co-Chair	David Huitink	University of Arkansas				
SPECIAL TECHNICAL CONTRIBUTIO	NS					
Keynote Chair	John Thome	EPFL				
Keynote Co-Chair	Amy Fleischer	Cal Poly				
Keynote Co-Chair	Satish Kumar	Georgia Institute of Technology				
Technology-Talk Chair	Peter de Bock	GE Global Research				
Technology-Talk Co-Chair	David H. Altman	Raytheon				
Technology-Talk Co-Chair	Madhusudan Iyengar	Google				
Panels Chair	Victor Chiriac	Qualcomm				
Panels Co-Chair	Amy Marconnet	Purdue University				
Panels Co-Chair	Przemyslaw Gromala	Bosch				
Poster Session & Art-in-Science Chair	Mahsa Ebrahim	Loyola Marymount University				
Poster Session Co-Chair	Khosrow Ebrahimi	Minnesota State University, Mankato				
Poster Session Co-Chair	Ron Warzoha	United States Naval Academy				
Poster Session Co-Chair	Joseph Hanson	Intel Corporation				
PDC Short Course Chair	Jeffrey Suhling	Auburn University				
PDC Short Course Co-Chair	Kitty Pearsall	IBM Corporation				

SPECIAL TECHNICAL CONTRIBUTIONS						
Women's Panel Representative	Cristina Amon	University of Toronto				
Women's Panel Representative	Amy Fleischer	Cal Poly				
ADMINISTRATIVE						
Administrative Assistant	Damaris David	ITherm				
Sponsoring & Exhibitor Chair	Joshua Gess	Oregon State University				
Sponsoring & Exhibitor Co-Chair	Gary B. Kromann	Consultant, Austin, TX				
Finance Chair	Milnes David	IBM Corporation				
Operations Chair	Pritish Parida	IBM Research				
NSF Interactions Chair	Mahsa Ebrahim	Loyola Marymount University				
COMMUNICATION						
Paper Management Database	Sandeep Tonapi	Anveshak				
Conference Proceedings Manager	Paul Wesling	ITherm				
Technical Program and Design	Justin Weibel	Purdue University				
Technical Program and Design	Dustin Demetriou	IBM Corporation				
Webmaster	Shashank Thakur	Anveshak				
Outreach & Engagement	Vaibhav Bahadur	University of Texas at Austin				
Publicity	John (Jack) Maddox	University of Kentucky				
Social & Social Media	Farah Singer	University of Maryland				
AWARD COMMITTEE						
Richard Chu ITherm Award Chair	Sushil Bhavnani	Auburn University				
Richard Chu ITherm Award Co-Chair	Koneru Ramakrishna	Cirrus Logic				
Richard Chu ITherm Award Co-Chair	Yogendra K. Joshi	Georgia Institute of Technology				
Best Paper Award Chair	Yogendra K. Joshi	Georgia Institute of Technology				
Best Paper Award Co-Chair	Koneru Ramakrishna	Cirrus Logic				
Best Paper Award Co-Chair	Jeffrey Suhling	Auburn University				
INTERNATIONAL ITHERM AMBASS	ADORS					
Ambassador	Roger Kempers	York University, Canada				
Ambassador	Poh Seng Lee	NUS, Singapore				
Ambassador	Mehmet Arik	Ozyegin University, Turkey				
Ambassador	Rishi Raj	IIT Patna, India				
Ambassador	Tim Persoons	Trinity College Dublin, Ireland				
Ambassador	Liang Chen	Xi'an Jiaotong University, Xian, China				
Ambassador	Fushinobu Kazuyoshi	Tokyo Institute of Technology, Japan				

60 Years of Know-How

From standard product to customized solution – we meet your requirements

Energy efficiency and compact design play a major role in thermal management applications. As a result of the low pressure drop of our coupling systems, we take energy saving into account at the same time as optimal performance. Reducing the sizes of our couplings allows their use in the most confined spaces. The flat-sealing valve design reliably prevents any fluid loss during the coupling and uncoupling process, thereby protecting the sensitive electronics and all electrical connections.

You can be sure that the know how we have acquired from

over 60 years in the development and production of quick connect couplings guarantees a reliable **and efficient solution for your** requirement.

CONFERENCE EXECUTIVE COMMITTEE

The Executive Committee is made up of past ITherm General Chairs who are willing to assist the conference. It provides the leadership and continuity needed to carry forward the thrust of our Inter Society Conference.

Dereje Agonafer	University of Texas at Arlington
Cristina H. Amon	University of Toronto
Mehdi Asheghi	Stanford University
Avram Bar-Cohen	University of Maryland
Sushil H. Bhavnani	Auburn University
Thomas Brunschwiler	IBM Research – Zurich
Madhusudan Iyengar	Google
Yogendra K. Joshi	Georgia Institute of Technology
Gary B. Kromann	Consultant
Tom Lee	Xilinx
Michael Ohadi	University of Maryland
Alfonso Ortega	Villanova University
Koneru Ramakrishna	Cirrus Logic
Bahgat Sammakia	State University of New York at Binghamton
Jeffrey Suhling	Auburn University
Sandeep Tonapi	Anveshak

Collage of Previous Art-in-Science Entries (Event will Resume ITherm 2021)

KEYNOTES

KEYNOTE 1: FUTURE OF WORK DEPENDS ON ETHICS IN AI

Presenter: Beena Ammanath

Founder and CEO of Humans for AI and AI Managing Director, Deloitte July 21, Tuesday, 12:00 – 1:00 PM (Eastern)

Abstract: As innovations in artificial intelligence, robotics, and other technology bring us virtual assistants, wearable health tech, autonomous vehicles, and more, many industries are transforming rapidly. While these new technologies have brought unimaginable benefits, they also are disrupting many industries and changing the structure of the workforce. The challenges and opportunities posed by AI are so great that calls are being made around the world for an ethical framework that would govern

the development and use of AI, so that deployment of AI will be safe and beneficial for society as a whole.

Biography: Beena is an award winning senior executive with extensive global experience in Artificial Intelligence and digital transformation. She is the Founder and CEO of Humans For AI and AI Managing Director at Deloitte. Her knowledge spans across e-commerce, financial, marketing, telecom, retail, software products, services and industrial domains with companies such as HPE, GE, Thomson Reuters, British Telecom, Bank of America, e*trade and a number of Silicon Valley startups. She has co-authored the book "AI Transforming Business."

A well-recognised thought leader and keynote speaker in the industry, she also serves on the Industrial Advisory Board at Cal Poly College of Engineering and has been a Board Member and Advisor to several startups including Flerish, Predii, iguazio, CliniVantage and ProjectileX. Beena has been honored several times for her contribution to tech and her philanthropic efforts, including UC Berkeley 2018 Woman of the Year in Business Analytics, San Francisco Business Times' 2017 Most Influential Women in Bay Area, WITI's Women in Technology Hall of Fame, National Diversity Council's Top 50 Multicultural Leaders in Tech, CIO.com and Drexel University's Analytics 50 innovator, Forbes Top 8 Female Analytics Experts and Women Super Achiever Award from World Women's Leadership Congress. Beena thrives on envisioning and architecting how data, artificial intelligence and technology in general, can make our world a better, easier place to live.

KEYNOTE 2: THE FUTURE OF 3D SYSTEM INTEGRATION TECHNOLOGY: KEEPING COOL WHILE TURNING UP THE HEAT

Presenter: Eric Beyne

Imec fellow, VP R&D, Director 3D System integration program July 22, Wednesday, 12:00 – 1:00 PM (Eastern)

Abstract: As advanced CMOS technology keeps scaling, monolithic large-scale heterogeneous system-on-chip integration becomes ever more challenging, technically and economically. While individual functions for memory storage or logic still benefit significantly from CMOS scaling, the optimum implementation is diverging. A better solution can be realized by functionally partitioning the system into multiple

smaller die ("chiplets") that can be realized using different, heterogenous technologies. High density 3D integration technologies are needed to recombine these chiplets, with minimal impact on the electronic circuit performance. Different 3D integration technologies can be applied at different levels of the 3D interconnect hierarchy, from the package to the die, to the wafer, to the standard cell and even to the transistor level, spanning an exponential scale in interconnect density. The 3D integration solutions allow for the integration of ever larger systems. This also implies that power dissipation density increases, and power delivery and heat removal become significant challenges. Hot spots become increasingly localized and time variable. This requires rethinking of the standard high-performance cooling approaches. To identify the correct choice and specifications for the 3D System integration approach, it is increasingly important to consider this during the earliest phases of system design. EDA tools are needed that enable the co-design of functionally partitioned heterogeneous systems in an "SOC" design style, including the power delivery and power removal systems.

Biography: Dr.ir. Eric Beyne obtained an MSc degree in Electrical Engineering in 1983 and the PhD in Applied Sciences in 1990, both from the University of Leuven (KU Leuven). Since 1986 he has been with imec in Leuven, Belgium. Currently, he is imec fellow, VP R&D and Director of imec's 3D System Integration program in which Imec's own staff works alongside engineers from 30+ industrial partners (IDMs, foundries, fabless semiconductor companies, OSATs as well as equipment, material, and software tool suppliers) This team performs R&D in the field of high-density interconnection and packaging techniques focused on "system-in-a-package" integration, 3D-interconnections including through-silicon vias, micro-bumps, and copper pillars, wafer-level packaging, as well as research on packaging reliability including thermal and thermo-mechanical characterization. He is and has been an active member of the IEEE-EPS and IMAPS societies. He received the 2003 Microwave Prize from the IEEE Microwave Theory and Techniques Society, the 2016 European Semiconductor Award from Semi-Europe for his work on 3D technology and the 2019 W. D. Ashman-J.A.Wagnon Technical Achievement Award from IMAPS.

KEYNOTE 3: AIRCRAFT ELECTRIFICATION FEASIBILITY AND THERMAL MANAGEMENT CHALLENGES

Presenter: Charles Lents

Associate Director, Research, Raytheon Technologies Research Center July 23, Thursday, 12:00 – 1:00 PM (Eastern)

Abstract: Aircraft electrification has been steadily progressing over the last 30 years as the demand for electric power on aircraft continues to increase. The typical airliner class aircraft (> 120 passengers) now has approximately 180 kW of installed electric power capability, supplying standard electric loads, such as lighting, avionics and passenger services, and supplying limited subsystems' power demands such as

hydraulic pumps, fuel pumps, and fans. Most of these loads are passively cooled with process fluid or ambient air. The electric generators are oil cooled at nearly 100°C. The Boeing 787 ushered in a new era, with installed electric power of 1.5 MW. The increased capability meets the demands of a so called "More Electric Aircraft" (MEA) where subsystems traditionally powered either hydraulically or pneumatically are now powered electrically, most notably the aircraft environmental control system (ECS) and the wing anti-ice system. The ECS is supplied by greater than 100 kW electric compressors and wing anti-ice is provided by electric resistive thermal blankets. The varying voltage and frequency requirements of these different loads leads to the incorporation of ac-dc and dc-ac inverters for load power conditioning. These inverters generate a significant amount of heat at relatively low temperature. Now with the interest in propulsion electrification of airliner class aircraft, electric power demand could range between a few mega-watts up to greater than 20 MW. Propulsion electrification holds the promise of reducing aviation's carbon footprint, both by enabling access to green electric power and by reducing the power required for flight though distributed propulsion and propulsion airframe integration. Like the electric system of an MEA aircraft, the electric drive train (EDT) of an electrified propulsion system will require power electronics for propulsive load power conditioning. Even at efficiencies approaching 98%, these EDT components will reject a significant amount of low temperature heat (~ 25 to 50°C). This talk will discuss MEA background, describe the design space of possible electrified propulsion systems and aircraft, discuss the rationale and feasibility of various concepts, and highlight the thermal management challenges of electrified propulsion systems.

Biography: Mr. Lents has over thirty years of experience in the conceptual design of integrated aircraft primary and secondary power and thermal management systems. Mr. Lents is responsible for integrated aircraft systems, thermal management, and innovative propulsion systems technology development. He led the development of an integrated modeling environment for the study of integrated total aircraft power systems and their impact on air vehicle performance and led several studies investigating power and thermal management solutions for vehicles such as the JUCAS and future JSF derivatives. Currently, he is leading a NASA funded effort that developed the conceptual design of a single-aisle parallel hybrid propulsion system and is presently developing enabling technology for hybrid electric propulsion. He has experience in a diverse set of technical areas, including thermodynamics, fluid dynamics, turbo-machinery, heat transfer, power electronics cooling, systems integration and aircraft secondary power systems, reliability, risk/uncertainty analysis and life-cycle cost modeling. Mr. Lents received his B.S. in Mechanical Engineering from the University of Illinois and his M.S. in Mechanical Engineering from Purdue University.

Several industries are adopting liquid cooling and 2-phase solutions have been commercialized successfully

5G TELECOM

DATACENTER

AUTOMOTIVE

CONSUMER ELECTRONICS

POWER

ELECTRONICS

HONEYWELL BRINGS DECADES OF TECHNOLOGY EXPERTISE TO ELECTRONICS COOLING SOLUTIONS

Products

- High performance fluid

- New customized fluids

- Interface Material

- Technical Support
 - Heat transfer experts
 - E-cooling lab for fundamental experiments and testing

Global Supply

- Global supply chain to provide products where needed
- Approvals and product registration

RICHARD CHU ITherm AWARD FOR EXCELLENCE

QUIET REVOLUTIONS: HOW ADVANCED MICROELECTRONICS PACKAGING CONTINUES TO DRIVE HETEROGENEOUS INTEGRATION

Presented by the 2020 Awardee Dr. Ravi Mahajan, Intel Fellow , High Density Interconnect Pathfinding, Vice-President of Publications, IEEE Electronics Packaging Society, & Managing Editor-in-Chief of the IEEE Transactions of the CPMT July 21, Tuesday, 1:30 - 2:30 PM (Eastern)

Abstract: The past few years have seen increasing interest in advanced package architectures as compact, high performance platforms for heterogeneous integration across a wide variety of applications. Interest in advanced packaging is driven by the need for increased on-package bandwidth, the need to integrate diverse IP from

multiple foundries and the need for improved yield resiliency. A number of innovative package architectures that enable power-efficient on-package bandwidth interconnects have made major advances in microelectronics performance possible. Focus on heterogeneous integration makes visible to broader audiences, the packaging community that in a quiet, systematic and largely unheralded manner continues to drive momentous changes in packaging, assembly and associated test technologies. In this presentation, I will attempt to describe some of these changes and more importantly offer a perspective for how packaging should evolve and what this means to the thermal management community.

Ravi Mahajan is an Intel Fellow and the Director of Pathfinding for Assembly and Packaging technologies for future silicon nodes. Ravi also represents Intel in academia through research advisory boards, conference leadership and participation in various student initiatives.

Ravi has led Pathfinding efforts to define Package Architectures, Technologies and Assembly Processes for multiple Intel silicon nodes since 2000, spanning 90nm, 65nm, 45nm, 32nm, 22nm and 7nm silicon. Earlier in his Intel career, he spent eight years as a Technologist and manager for the Thermal-Mechanical Tools and Analysis Group. In these roles, Ravi oversaw a Thermal-Mechanical Lab chartered with delivering detailed thermal and mechanical characterization of Intel's packaging solutions for current and future processors. His group was also responsible for the collaborative development of a number of technologies for the thermal management of micro-electronics, high precision thermal and thermo-mechanical characterization and modeling techniques.

A prolific inventor and recognized expert in microelectronics packaging technologies, Ravi holds more than 50 patents, including the original patents for silicon bridges that became the foundation for Intel's EMIB technology. His early insights also led to high-performance, cost-effective cooling solutions for high-end microprocessors and the proliferation of photo-mechanics techniques used for thermo-mechanical stress model validation.

Ravi joined Intel in 1992 after earning a bachelor's degree from Bombay University, a master's degree from the University of Houston, and a Ph.D. from Lehigh University, all in Mechanical Engineering. His contributions during his Intel career have earned him numerous industry honors, including the SRC's 2015 Mahboob Khan Outstanding Industry Liaison Award, the 2016 THERMI Award from SEMITHERM, the 2016 Allan Kraus Thermal Management Medal & the 2018 InterPACK Achievement award from ASME and the 2019 "Outstanding Service and Leadership to the IEEE" Awards from IEEE Phoenix Section & Region 6.

He is an IEEE EPS Distinguished Lecturer. He is one of the founding editors for the Intel Assembly and Test Technology Journal (IATTJ) and currently VP of Publications & Managing Editor-in-Chief of the IEEE Transactions of the CPMT. Additionally, he has been long associated with ASME's InterPACK conference and was Conference Co-Chair of the 2017 Conference. Ravi is a Fellow of two leading societies, ASME and IEEE. He was named an Intel Fellow in 2017.

STUDENT HEAT SINK DESIGN CHALLENGE

JULY 23, THURSDAY, 1:30 - 2:45 PM (EASTERN)

The ITherm organizing committee is delighted to again host the joint ASME K-16 / IEEE EPS Student Design Challenge: "Expand the Possibilities of Heat Sink Design using Additive Manufacturing" during ITherm 2020 Virtual Conference.

The Student Heat Sink Design Challenge is a team competition in which students design, analyze, and optimize an aluminum additively manufactured heat sink to cool a constant heat flux source subject to forced convection. Each year's competition offers a new flow configuration and performance metric. The design submitted from each student team, supported by their performance prediction, is evaluated based on a series of design and manufacturing criteria. The semi-finalist teams having the most effective and creative designs are granted the opportunity to have their designs fabricated using the additive manufacturing facilities at GE and performance tested at Oregon State University. The finalists are invited to present their designs to the ITherm community.

For the 2020 competition, designs were submitted by teams from around the world and evaluated by a team of experts. The top designs were 3D printed and experimentally tested. Six teams selected as finalists will present their work at the 2020 ITherm Virtual Conference:

- 1. University of Texas Arlington
- 2. Purdue University
- 3. Penn State University
- 4. Georgia Tech
- 5. Oregon State University
- 6. University of Texas Arlington

ASME K-16 and IEEE EPS Student Design Challenge Presented at ITherm 2019

2019 Finalists:

ASU 3D Devils, Purdue Heat Sink Makers, Trinity College Dublin, and University of Maryland

2019 Winner:

Penn State Happy Valley

TECHNOLOGY-TALK SESSIONS

TECH TALK SESSION 1: HETEROGENEOUS INTEGRATION JULY 21, TUESDAY, 3:00 – 4:00 PM (EASTERN)

Session Chairs: Madhusudan Iyengar (Google); Weihua Tang (Intel)

EFFICIENT, ATHERMAL, PHOTONICS USING METAL OPTICS

Speaker: Amr S. Helmy (University of Toronto); Y. Su, P. Chang and C. Lin

Abstract: The talk will start with an overview of the current state of Si photonics. Then an overview of some of the thermal limitations of this formidable platform will be provided. After, a novel class of nanoscale devices that address unmet performance demands for applications in data communications will be discussed. Within the Si photonic platform, dielectric waveguides

confine light via total internal reflection. This imposes bounds on minimizing device dimensions and density of integration. Those bounds arise due to the diffraction limit and the cross-coupling between neighboring waveguides. Nanoscale Plasmonic waveguides provide the unique ability to confine light within a few nanometers and allow for near perfect transmission through sharp bends. With these structures as a building block, new levels of optoelectronic integration and performance metrics for athermal transceivers with achievable bandwidths in excess of 500 Gbps as will be overviewed in this talk.

Amr is a Professor in the department of electrical and computer engineering at the University of Toronto. Prior to his academic career, he held a position at Agilent Technologies, R&D division, in the UK between 2000 and 2004. At Agilent his responsibilities included developing InP-based photonic semiconductor integrated circuits and high-power submarine-class 980 nm pump lasers. He received his Ph.D. and M.Sc. from the University of Glasgow with a focus on photonic devices and fabrication technologies, in 1999 and 1995 respectively. He received his B.Sc. from Cairo University in 1993. His research interests include photonic device physics and engineering, with emphasis on nonlinear and quantum optics in III-V semiconductors as well as nanophotonic circuits utilizing plasmonics. He has served as Vice President Membership for the IEEE Photonics Society (2008-2010). He is currently the CLEO Program Chair (2018-2020). He also served as the Technical Program Chair for IPC 2016-2018.

IEEE HETEROGENEOUS INTEGRATION ROADMAP INITIATIVE

Speaker: Bill Bottoms

Abstract: The pace of progress from 1965 was enabled by the CMOS scaling of Moore's Law. The benefits of scaling decreased as the geometries approached the limit of the physics and many things changed. The electronics world entered a state of technology chaos which drove an explosive increase in innovation. The ITRS, with a focus on the benefits of CMOS scaling,

published its last edition in July of 2016. The Heterogeneous Integration Roadmap (HIR) was established in the first quarter of 2015 with a goal of providing a roadmap to maintain the pace of progress for decades into the future. This presentation will address the HIR structure and governance and present the 2019 edition and work toward the 2020 edition. The HIR is organized into five sections: (1) Market Applications; (2) Heterogeneous Integration Components; (3) Cross Cutting Topics; (4) Integration Processes; (5) Co-Design and Simulation. The highlights from the 23 chapters in the 2019 Edition and the status of the 2020 Edition will be presented.

Dr. Bottoms received a B.S. degree in Physics from Huntington College in Montgomery, Alabama in 1965, and a Ph.D. in Solid State from Tulane University in New Orleans in 1969 and is currently Chairman of Third Millennium Test Solutions. He has worked as a faculty member in the department of electrical engineering at Princeton University, manager of Research and Development at Varian Associates, founding President of the Semiconductor Equipment Group of Varian Associates and general Partner of Patricof & Co. Ventures. Dr. Bottoms has participated in the startup and growth of many companies through his venture capital activity and through his own work as an entrepreneur. Some of his current responsibilities include: Emeritus Member of the Board of Tulane University; Co-Chair of the Heterogeneous Integration Roadmap; Chairman of the SEMI's Awards Committee; Member of the Board of MIT's Microphotonic Center; Chairman of Fluence Analytics; Chairman of the Technology Board of Tulane's POLYRMC center.

Final Conference Program

TECH TALK SESSION 2: AI IN THERMAL MANAGEMENT JULY 22, WEDNESDAY, 1:30 – 2:30 PM (EASTERN)

Session Chairs: Peter deBock (GE); Ram Ranjan (Raytheon Technologies)

LOST IN SPACE: DESIGN MANIFOLDS CAN ACCELERATE DESIGN AND OPTIMIZATION ITERATIONS SEVERAL FOLD

Speaker: Mark D. Fuge (University of Maryland)

Abstract: When designing complex geometry like the surface of a turbine blade or heat exchanger, engineers face a choice. They can use many surface control points to achieve subtle

design changes that can lead to potentially important performance improvements — at the risk of getting lost in the larger design space that results. Or they can play it safe, using a lower-dimensional, standard design representation that they can tractably explore and optimize — at the risk of settling with lower performance designs. This talk advocates for a different path that seemingly gets the best of both worlds. I propose learning a Design Manifold — a non-linear, low-dimensional subspace via Machine Learned Generative Models — that captures the key ways in which a design space varies by leveraging past examples of successful designs. I will describe this idea and then demonstrate how it aids gradient-free optimization via an example of airfoil design, where using Design Manifolds reduces the design iteration time by 10x compared to traditional representations and 2-3x compared to state of the art research. Importantly, these approaches do not require access to performance gradients and thus apply to any simulation code, and can adapt to multi-part assemblies.

Mark Fuge is an Assistant Professor of Mechanical Engineering at the University of Maryland, College Park, where he is also an affiliate faculty in the Institute for Systems Research and a member of the Maryland Robotics Center and Human-Computer Interaction Lab. His staff and students study fundamental scientific and mathematical questions behind how humans and computers can work together to design better complex engineered systems, from the molecular scale all the way to systems as large as aircraft and ships using tools from Applied Mathematics and Computer Science. He received his Ph.D. from UC Berkeley and has received a NSF CAREER Award, a DARPA Young Faculty Award, and a National Defense Science and Engineering Graduate (NDSEG) Fellowship. He has prior/current support from NSF, DARPA, ARPA-E, NIH, ONR, and Lockheed Martin.

INNOVATION IN HEAT EXCHANGERS WITH SURROGATE MODELING AND SHAPE OPTIMIZATION

Speaker: Vikrant Aute, Reinhard Radermacher (University of Maryland)

Abstract: Space conditioning and electronic equipment cooling accounts for a significant fraction of the primary energy consumption. Air-to-refrigerant heat exchangers are a key component in such equipment and have a major influence on the cost, performance, efficiency and global warming impact of these systems. The air-side thermal resistance is the dominant resistance in such heat exchangers and as such, has received significant research attention. This talk presents a novel framework for design discovery and optimization of air-to-refrigerant heat exchangers. The framework couples surrogate modeling, multi-objective genetic algorithms,

CFD, finite element analysis, and multiscale modeling to arrive at optimal and robust heat exchanger designs. The resulting designs are prototyped using additive and conventional manufacturing methods and tested in a standardized wind tunnel. Comprehensive testing for a radiator, condenser, and evaporator applications are conducted. The predicted performance agreed within 12% of measured values for all performance metrics. The novel designs have the potential to be 20% lighter, 20% smaller and exhibit more than 20% reduction in charge.

Vikrant Aute is a Research Scientist and Co-Director of the industry and government-funded Center for Environmental Energy Engineering at the University of Maryland. He has more than 20 years of experience in developing algorithms and numerical methods for modeling and design optimization of heat exchangers and heat pumps. His research focus includes: modeling and optimization of HVAC&R systems and components, innovation in next-generation heat exchangers, approximation assisted and multi-objective robust optimization, genetic algorithms, data visualization and applications of machine learning for HVAC&R. He is an active member of ASHRAE and serves on multiple technical and standards committees. He holds a BE in Mechanical Engineering from the University of Pune (India), MS and PhD in Mechanical Engineering from the University of Maryland and an MS in Data Analytics from the University of Maryland University College.

TECH TALK SESSION 3: TRANSIENT THERMAL MANAGEMENT JULY 22, WEDNESDAY, 3:00 – 4:00 PM (EASTERN)

Session Chairs: David Altman (Raytheon); Patrick Shamberger (Texas A&M)

CONTROL CO-DESIGN FOR TRANSIENT THERMAL MANAGEMENT

Speaker: Neera Jain (Purdue)

Abstract: Over the last few decades, many factors, including increased electrification, have led to a critical need for fast and efficient transient cooling. Thermal management systems (TMSs) are typically designed using steady-state assumptions and to accommodate the most extreme operating conditions that could be encountered, such as maximum expected heat loads.

Unfortunately, by designing systems in this manner, closed-loop transient performance is neglected and often constrained. If not constrained, conventional design approaches result in oversized systems that are less efficient under nominal operation. In this talk I will discuss why transient component modeling and subsystem interactions should be considered at the design stage for TMSs to avoid costly future redesigns, and how techniques such as control co-design can be used to accomplish this.

Neera Jain joined the School of Mechanical Engineering and Ray W. Herrick Laboratories at Purdue University as an assistant professor in January 2015. At Purdue, she leads the Jain Research Laboratory where her research spans dynamic modeling, control, and optimization of thermal energy systems, transportation systems, manufacturing processes, and human-automation interaction systems. From May 2013-May 2014, Dr. Jain was a visiting member of the research staff in the Mechatronics Group at Mitsubishi Electric Research Laboratories in Cambridge, MA where she designed advanced control algorithms for HVAC systems. Before earning her doctorate in Mechanical Engineering at the University of Illinois at Urbana-Champaign in 2013, Dr. Jain earned her S.B. from the Massachusetts Institute of Technology in 2006 and her M.S. from the University of Illinois at Urbana-Champaign in 2009, both in Mechanical Engineering. She is a recipient of the Department of Energy Office of Science Graduate Fellowship (2010-2013) and the ASME Graduate Teaching Fellowship (2011-2012).

EMERGING THERMAL ENERGY STORAGE NEEDS: HIGH-POWER ELECTRONIC AND PHOTONIC COOLING

Speaker: Darin Sharar (US Army Research Laboratory)

Abstract: Thermal energy storage using phase change materials promises tremendous benefits in a diverse array of technology spaces, ranging from large scale power generation to residential heating and cooling, and even more-localized electronic/photonic thermal management. This discussion covers ongoing efforts at the Army Research Lab to develop high-capacity, high-power thermal energy storage systems for military and (by extension) commercial and residential applications. The discussion begins with a description of transient thermal load scenarios and progresses to tradeoffs between different active and passive cooling approaches. Focus is placed on emerging technologies and energy landscapes, and the need for improved thermal energy storage materials, modeling tools, and systems as a means for future passive transient mitigation.

Dr. Sharar began his career with the U.S. Army ten years ago after completing his undergraduate degree, receiving his Mechanical Engineering doctorate degree two years ago, and transitioning to a career civil servant one year ago. Upon joining ARL, Dr. Sharar initiated the first phase change thermal management thrust at ARL through the DARPA Thermal Ground Plane (TGP) program, where Dr. Sharar led the design, fabrication, and operation of a custom high-g thermal test station to test vapor chambers for DOD applications. Dr. Sharar initiated a two-phase flow boiling research effort and first-of-a-kind test bed in which he developed and experimentally validated a new flow regime map and heat transfer model that recognizes the role played by two-phase flow structures in enhancing thermal transport within refrigeration tubes. These new models marked a significant contribution to the scientific community, leading to the completion of Dr. Sharar's doctorate degree, and enabling more reliable thermofluid prediction, design, and optimization of two-phase (refrigeration) cooling systems for DOD systems such as Microclimate Cooling Systems (MCS) on Navy, Army, and Marine Corps ground and aerial vehicle systems, Environmental Control Units (ECU), vehicle cabin cooling systems, and heat exchanger components for laser diodes and Si electronics. More recently, Dr. Sharar has initiated a solid-state transient cooling thrust at ARL, including vulnerability-protection mechanisms, elastocaloric cooling, and passive phase change transient cooling.

HIR VIRTUAL WORKSHOP

RECORDING AVAILABLE JULY 21st – AUG 19th

The Heterogeneous Integration Roadmap (HIR), released October 2019, is a roadmap to the future of electronics, identifying technology requirements and potential solutions. The primary objective is to stimulate pre-competitive collaboration between industry, academia and government to accelerate progress. The roadmap offers professionals, industry, academia and research institutes a comprehensive, strategic forecast of technology over the next 15 years. The HIR also delivers a 25-year projection for heterogeneous integration of Emerging Research Devices and Emerging Research Materials with longer research-and-development timelines. With the release of the 2019 HIR edition, the preparation of the 2020 edition is well underway.

All ITherm 2020 Virtual registrants will have access to the recording of the HIR Workshop held as part of the 70th ECTC Virtual Event. This HIR workshop will feature speakers from all 22 chapters in 4 separate sessions together with an HIR overview presentation. They will describe their work in HIR 2019 and their focus for HIR 2020. The purpose of the HIR workshop is to broaden the proliferation of the roadmap content to the virtual ITherm 2020 Virtual participants for dialogue and feedback for inclusion into the 2020 edition.

- HIR Overview: William (Bill) Chen and WR (Bill) Bottoms
- HI for Communication Moderator: Amr Helmy, Univ of Toronto
- HI for Consumer & Industrial Applications Moderator: Ravi Mahajan, ASME EPPD & Intel
- HI for High Performance Computing Moderator: Bill Bottoms, IEEE EPS and 3MTS
- HI for Special Applications
 Moderator: Tom Salmon, SEMI

HETEROGENEOUS INTEGRATION ROADMAP

Bill Chen

Bill Bottoms

Amr Helmy

Ravi Mahajan

Tom Salmon

RECORDINGS AVAILABLE JULY 21st – AUG 19th

ECTC/ITherm JOINT DIVERSITY PANEL

DIVERSITY AND INCLUSION DRIVES INNOVATION AND PRODUCTIVITY

ITherm Chair: Cristina Amon (University of Toronto); ECTC Chair: Kitty Pearsall (Boss Precision)

Diversity in today's workplace and academia must be more inclusive than just race, gender, and ethnicity. There are religious, political, educational, and cultural differences. Adding to this mix are varied socioeconomic backgrounds, sexual orientation, and people with disabilities. The Global Diversity Practice Consultancy Group puts forth: "Openness to diversity widens our access to the best talent. Inclusion allows us to engage talent effectively. Together, this leads to enhanced innovation, creativity, productivity, reputation, engagement and results." The panel will discuss their experiences, challenges and best practices that have delivered positive outcomes.

Panelists:

Adeel Bajwa Kulicke and Soffa

Allyson Hardzell Veryst Engineering

Amy S. Fleisher California Polytechnic State University

Ivan Ndip Fraunhofer IZM

STUDENT POSTER SESSION

This student poster presentation and networking event will feature 4 virtual session rooms, one for each technical track, open for viewing by all registered conference attendees. These sessions will include a pre-recorded, 2-minute long elevator pitch alongside an E-poster for each student presenter. Furthermore, the poster session committee will share the resumes of those student presenters who are seeking jobs and internships upon their requests with the professional attendees in order to connect the students to potential employers.

All student first authors with accepted papers were eligible to apply for poster session. Each E-poster was submitted in advance of the conference judged offline by industry and academic professionals. Additionally, the elevator pitch presentations will be judged during the virtual conference period. The judgment process will be based on technical merit, clarity and self-sufficiency of the content, novelty of the work, overall impact of the poster display, and the elevator pitch oral presentations.

Outstanding posters will be selected for awards based on the evaluation scores. Poster awards will be announced after the conference via email and award certificates will be mailed to the awardees. The poster awards are independent of the paper awards, and the same work is eligible for winning both awards based on the specific judging criteria for each award.

ITherm 2019 Student Poster Presenters

LIST OF STUDENT POSTERS

SESSION 1: EMERGING TECHNOLOGIES

	Student name	School	Paper #	Poster title
1	Hong-Wen Chiou	National Chiao Tung University	P196	Temperature-to-Power Mapping for Smartphones
2	Melissa McCann	Washington University in St. Louis	P224	Analyzing the Distribution of Microencapsulated Organic Phase Change Materials Embedded in a Metallic Matrix
3	Sankar Muthukrishnan	University of Minnesota, Twin Cities	P238	A Systematic Study of Microstructure Length Scale on Heat Transfer Enhancement in Spray Cooling
4	Khan Md. Rabbi	University of Central Florida	P246	A Low-Cost Thermal Mapping Technique for Electronics Cooling using Quantum Dots
5	Soumya Bandyopadhyay	Purdue University	P278	A Cascaded Multi-Core Vapor Chamber for Intra-Lid Heat Spreading in Heterogeneous Packages
6	Ruochun Zhang	University of Wisconsin- Madison	P337	Parameter-free Shape Optimization of Heat Sinks
7	Diego Vaca	Georgia Institute of Technology	P363	Thermal Conductivity of B-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy
8	Farid Soroush	Stanford University	P393	Mechanical Design and Reliability of Gold-Tin Eutectic Bonding for Silicon-based Thermal Management Devices
9	Ved Soni	Auburn University	P426	Effect of Dynamic Folding with Varying Fold Orientations and C-rates on Flexible Power Source Capacity Degradation
10	Kartik Goyal	Auburn University	P428	Additively Printed Multi-Material Temperature Sensor Realized using Screen Printing
11	Jinesh Narangaparambil	Auburn University	P435	Sintering Process Conditions for Additive Printing of Multi- Layer Circuitry Aerosol-Jet Process in Conjunction with Nanoparticle Ink
12	Hyesoo Jang	Auburn University	P442	Study on Folding-Reliability of Wearable Biometric Band
13	Mrinmoy Saha	Auburn University	P446	Evolution of High Strain Rate Mechanical Properties of SAC- R with High Temperature Storage at 50C with High and Low operating temperatures
14	Chongyang Cai	Binghamton University	P458	Comparative Analysis of Package Warpage Using Confocal Method and Digital Image Correlation

SESSION 2: COMPONENT LEVEL THERMAL MANAGEMENT

	Student name	School	Paper #	Poster title
1	Tanvir Ahmed Chowdhury	University of Central Florida	P135	Measurement of Hotspot Cooling Performance of Submerged Water Jet via Infrared Thermography
2	Gokberk Tarcin	Ozyegin University	P157	Rapid Heating and Cooling Chamber for Photonics Junctions Measurement System
3	Justin Costa-Greger	University of Nebraska- Lincoln	P219	Pool Boiling Inversion and Hysteresis with Femtosecond Laser Processed 304 Stainless Steel Surfaces for Heat Transfer Enhancement
4	Assaad El Helou	Southern Methodist University	P235	High Resolution Thermoreflectance Imaging and Numerical Modeling of Self-Heating in GaN HEMTs
5	Georgios Damoulakis	University of Illinois at Chicago	P282	Vapor Chamber with Wickless Condenser - Thermal Diode
6	Amitav Tikadar	Georgia Institute of Technology	P313	Coupled Electro-Thermal Analysis of Permanent Magnet Synchronous Motor for Electric Vehicles
7	Sougata Hazra	Stanford University	P349	Microfabrication Challenges for Silicon-based Large Area (>500 mm ²) 3D-manifolded Embedded Micro-cooler Devices for High Heat Flux Removal
8	Karthekeyan Sridhar	Auburn University	P362	Phase Change Cooling of Spacecraft Electronics: Terrestrial Reference Experiments prior to ISS Microgravity Experiments
9	Ceren Cengiz	Ozyegin University	P376	Enhanced Thermal Performance of High Flux LED Systems with Two-Phase Immersion Cooling
10	Gerard Laguna	Universitat de Lleida	P411	Experimental Validation of a Microfluidic Cell Cooling Solution
11	Remco van Erp	École polytechnique fédérale de Lausanne	P420	Embedded Microchannel Cooling for High Power-Density GaN Power Integrated Circuits
12	Ji Yong Kim	Ulsan National Institute of Science and Technology	P466	Effect of CVD Deposited Graphene Monolayer Thermal Effusivity on Phase Change Heat Transfer in 2-D Plate Condition with Highly Wettable FC-72

SESSION 3: SYSTEM LEVEL THERMAL MANAGEMENT / MECHANICS AND RELIABILITY

	Student name	School	Paper #	Poster title
1	Adeel Arshad	University of Nottingham	P117	Thermal Performance of PCM-based Heat Sink with Partially Filled Copper Oxide Coated Metal-Foam for Thermal Management of Microelectronics
2	Tyler Shelly	Purdue University	P141	A Dynamic Simulation Framework for the Analysis of Battery Electric Vehicle Thermal Management Systems
3	Andrew Michalak	University of Toronto	P145	A Novel Thermal Management Design Methodology for Hybrid Power Electronics Utilizing Genetic Optimization and Additive Manufacturing Techniques
4	Joshua Tompkins	University of Arkansas	P149	Air Flow Inversion for Enhanced Electronics Cooling in Additively Manufactured Air Channels
5	Justin Wang	US Army Research Laboratory	P167	Towards Time-Scale Matched Composites: System-Level Modeling of Organic and Metallic Phase-Change Material Composites Using a Two-Temperature Model
6	Gargi Kailkhura	University of Maryland College Park	P228	Numerical Investigation of a Novel Cross-Media Heat Exchanger for Liquid Cooling Applications
7	Alison Hoe	Texas A&M University	P240	Forward Selection Methodology for Phase Change Material Composite Optimization
8	Joshua Kasitz	University of Arkansas	P256	Nanoparticle Enhanced Crystallization of Sorbitol PCMs For Latent Heat and Temperature Control
9	Girish Anant Kini	Georgia Institute of Technology	P310	Corrosion in liquid cooling systems with water based coolant - Part 1: Flow loop design for reliability tests
10	Cristina Dragan	University Politehnica Timisoara, Romania	P329	Thermal Chamber Conditions vs. Car Environment Conditions
11	Albraa Alsaati	Purdue University	P394	Confined Immersion Cooling in Microscale Gaps
12	Francy Akkara	Auburn University	P300	Effect of Combining Solder Pastes with SAC305 Spheres on Component Reliability in Harsh Thermal Cycling
13	Thomas Germain	University of Central Florida	P335	The Effect of the Stiffness of Soft Materials on Hemiwicking Performance
14	Abhishek Deshpande	University of Maryland College Park	P346	Effect of Microscale Heterogeneities and Stress State on the Mechanical Behavior of Solder Joints
15	Abdullah Fahim	Auburn University	P354	Nanomechanical Characterization of Various Materials within PBGA Packages Subjected to Thermal Cycling Loading
16	Jacek Nazdrowicz	Lodz University of Technology	P390	Thermal Expansion Phenomena and Influence on Damping Coefficient and Stiffness Variation for MEMS Kinematic Quantity Microsensors and Microactuators
17	Debabrata Mondal	Auburn University	P404	Modeling Deformation Behavior of SAC305 Solder Joints with Multiple Grains

SESSION 4: MECHANICS AND RELIABILITY

	Student name	School	Paper #	Poster title
1	Tumininu Olatunji	University of Arkansas	P161	Fabrication of compliant interconnects using additive manufacturing
2	Rachel McAfee	Oregon State University	P174	Compatibility Analysis of Liquid Gallium and Common Packaging Metals for Applications in Electronic Component Thermal Management
3	Xin Wei	Auburn University	P301	Fatigue Performance of Doped SAC Solder Joints in BGA Assembly
4	Minghong Jian	Auburn University	P302	Effect of Varying Amplitude Cycling on SAC-Bi Solder Joint Fatigue
5	Mohammed Abueed	Auburn University	P305	Effect of Creep and Fatigue on Individual SAC305 Solder Joints Reliability at Elevated Temperature
6	Mohammad Al Ahsan	Auburn University	P332	Effect of Thermal Cycling on the Mechanical Behavior of Lead Free Solder Materials
7	Jun Chen	Auburn University	P336	Measurement of the Temperature Dependence of the Piezoresistive Coefficients of 4H Silicon Carbide
8	S M Hasan	Auburn University	P359	Mechanical Behavior Evolution of SAC+Bi Lead Free Solder Exposed to Thermal Cycling
9	KM Rafidh Hassan	Auburn University	P399	Microstructural Evolution of SAC305 BGA Joints during Extreme High Temperature Aging
10	Mohd Aminul Hoque	Auburn University	P402	Cyclic Stress-Strain and Constitutive Behaviors of SAC-Bi-Ni- Sb Solder Alloys
11	Jing Wu	Auburn University	P405	Investigation and Comparison of Microstructural Changes in SAC and SAC+X Solders Exposed to Short-Term Aging
12	Madhu Kasturi	Auburn University	P430	Effect of Long Term Isothermal Exposure on Underfill Material Properties
13	Aathi Raja Ram Pandurangan	Auburn University	P431	Effect of Shock Angle on Solder-Joint Reliability of Potted Assemblies Under High-G Shock
14	Padmanava Choudhury	Auburn University	P432	Effect of Thermal Aging on the Interface Fracture Toughness of the PCB-UF Interface
15	Vishal Mehta	Auburn University	P438	High Strain Rate Properties for SAC305 at Cold Operating Temperatures down to -65°C
16	Vikas Yadav	Auburn University	P440	Low Temperature High Strain-Rate Material Properties for SAC-Q Leadfree Alloy
17	Yunli Zhang	Auburn University	P441	The Degradation Mechanisms of Underfills Subjected to High Temperature Long Term Aging
18	Tony Thomas	Auburn University	P445	RUL Estimations of SAC305 Solder PCB's under Different Conditions of Temperature and Vibration Loads
19	Pengcheng Yin	SUNY Binghamton	P462	Shock Performance Enhancement of a Container for Rack Server
20	Jong Hwan Ha	SUNY Binghamton	P467	Effect of Misaligned Passive Component on Fatigue Life of Solder Joints and Solder Shape

CONFERENCE TECHNICAL PROGRAM

TRACKS & SESSIONS

COMPONENT-LEVEL THERMAL MANAGEMENT

- TI-1: Heat Sinks and Heat Exchangers I
- TI-2: Heat Sinks and Heat Exchangers II
- TI-3: Cold Plates I
- TI-4: Cold Plates II
- TI-5: Heat Pipes and Vapor Chambers I
- TI-6: Heat Pipes and Vapor Chambers II
- TI-7: TIMs and Heat Spreaders
- TI-8: Two-Phase Cooling Applications
- TI-9: LEDs and Power Electronics
- TI-10: Heterogeneous Integration
- TI-11: Thermal Analysis and Modeling
- TI-12: Cooling Fluids
- TI-13: Equipment Cooling

SYSTEM-LEVEL THERMAL MANAGEMENT

- TII-1: Data Center Transient and Efficiency
- TII-2: Data Center Air Flow
- TII-3: Data Center Thermosyphon
- TII-4: Liquid Cooling Boiling, Corrosion, and Fluids
- TII-5: Liquid Cooling Immersion and Impingement
- TII-6: Liquid Cooling Advanced Modeling
- TII-7: Thermal Systems Semiconductor
- TII-8: Thermal Systems Automotive
- TII-9: Thermal Systems Edge
- TII-10: Thermal Systems Battery Thermal Management
- TII-11: Thermal Systems Mobile Devices
- TII-12: Thermal Systems Motors and High Power Electronics
- TII-13: Solid-Liquid Phase Change Materials and Modeling
- TII-14: Solid-Liquid Phase Change Integration
- TII-15: Air Cooling Extreme, Heat Sinks, and Fans

EMERGING TECHNOLOGIES & FUNDAMENTALS

- E-1: Numerical Methods, Nano-To-Macro Scale I
- E-2: Numerical Methods, Nano-To-Macro Scale II
- E-3: Additive Manufacturing I
- E-4: Additive Manufacturing II
- E-5: Flexible Electronics
- E-6: Single-/Two-Phase Convection in Microchannels and Jets
- E-7: Novel Measurements, Instrumentation and Experimental Techniques I
- E-8: Novel Measurements, Instrumentation and Experimental Techniques II
- E-9: Silicon Fabrication for Thermal Management Devices
- E-10: Emerging Materials and Fabrication Techniques
- E-11: Thermal Transport in Nanotechnology

MECHANICS & RELIABILITY

- M-1: Solder Joint Reliability I
- M-2: Solder Joint Reliability II
- M-3: Solder Joint Reliability III
- M-4: Solder Joint Reliability IV
- M-5: Package and Interconnect Reliability I
- M-6: Package and Interconnect Reliability II
- M-7: Aging of Solder Joint I
- M-8: Aging of Solder Joint II
- M-9: Reliability of Advanced Packaging
- M-10: Materials Characteristics and Accelerating Testing
- M-11: Chip Package Interaction
- M-12: Reliability Under Harsh Environments
- M-13: Sensors and Power Packages
- M-14: Reliability of Restraint Mechanisms

TRACKS, SESSIONS, AND PRESENTATIONS

Below is a listing of tracks, sessions, and papers for all ITherm 2020 Virtual papers that have been accepted after the peer review process. Pre-recorded presentations will be available for all registered attendees to view in the period of July 21st to Aug 19th. Links to all sessions are available on the ITherm website:

https://www.ieee-itherm.net/itherm/conference/ITherm-2020-Virtual

TRACK: COMPONENT LEVEL THERMAL MANAGEMENT

SESSION TI-1: HEAT SINKS AND HEAT EXCHANGERS I

Session Chairs: Yingying Wang (Google), Jorge Padilla (Google), Zhihang Song (Northeastern University China)

Novel experimental methodology for characterizing fan performance in a Highly Resistive Environments (p348) Yaman Manaserh¹, Mohammad Tradat¹, Ghazal Mohsenian¹, Bahgat Sammakia¹, Alfonso Ortega², Mark Seymour³, Kourosh Nemati³. ¹Binghamton University, ²Villanova University, ³Future Facilities

Force convection performance of the heat sink with embedded heat pipes comparing two embedding technologies for heat pipes (p425)

Neda Mansouri¹, Ahmed Zaghlol², Cliff Weasner¹. ¹Mersen, ²McMaster University

A novel heat exchanger effectiveness approach for exploring performance limits of two-phase mini-channel boilers (p378)

Felipe Valenzuela, Alfonso Ortega, Villanova University

SESSION TI-2: HEAT SINKS AND HEAT EXCHANGERS II

Session Chairs: Jorge Padilla (Google), Liang Yin (GE Global Research)

Thermal Hydraulic Performance of High Porosity High Pore Density Thin Copper Foams Subject to Array Jet Impingement (p206)

Varun Prasanna Rajamuthu, Sanskar Panse, Srinath Ekkad. North Carolina State University

Conjugate heat transfer analysis of the supercritical CO₂ based counter flow compact 3D heat exchangers (p251) Janhavi Chitale¹, Abas Abdoli², George Dulikravich¹, Adrian Sabau³, James Black⁴. ¹Florida International University, ²TKelvin Corporation, ³Oak Ridge National Laboratory, ⁴National Energy Technology Laboratory

Numerical investigation of thermal transport in foam filled heat exchangers employing circular and non-circular jet impingement cross sections (p377)

Sina Kashkuli and Shadi Mahjoob. California State University Northridge

SESSION TI-3: COLD PLATES I

Session Chairs: Mark Schultz (IBM)

Evaluation of additively manufactured single-pass and two-pass enhanced microchannel heat sinks (p204) Sanskar Panse and Srinath Ekkad. North Carolina State University

Experimental validation of a microfluidic cell cooling solution (p411)

Gerard Laguna Benet¹, Manel Ibanes¹, Joan Rosell¹, Montse Vilarrubi¹, Amrid Amnache², Etienne Leveille², Rajesh Pandiyan², Luc Frechette², Jerome Barrau¹. ¹Universitat de Lleida, ²Universite de Sherbrooke

Embedded microchannel cooling for high power-density GaN-on-Si power integrated circuits (p420)

Remco Van Erp, Georgios Kampitsis, Luca Nela, Reza Soleimanzadeh Ardebili, Elison Matioli. Ecole Polytechnique Federale de Lausanne

SESSION TI-4: COLD PLATES II

Session Chairs: Xiangfei Yu (Apple), Jimil Shah (3M), Youmin Yu (Qualcomm)

Coldplate design for optimal thermal performance of high-speed electronics (p243)

Anil Yuksel, Vic Mahaney, Chris Marroquin. IBM

Stacked silicon microcoolers (p260)

Marc Bergendahl, Dario Goldfarb, Dishit Parekh, Ravi Bonam, Iqbal Saraf, Hongqing Zhang, Edward Cropp, Kamal Sikka. IBM

Considerations and challenges for large area embedded micro-channels with 3D manifold in high heat flux power electronics applications (p340)

Alisha Piazza¹, Sougata Hazra¹, Ki Wook Jung¹, Michael Degner², Man Prakash Gupta², Edward Jih², Mehdi Asheghi¹, Ken Goodson¹. ¹Stanford University, ²Ford Motor Company

Microfabrication challenges for silicon-based large area (>500 mm²) 3D-manifolded embedded micro-cooler devices for high heat flux removal (p349)

Sougata Hazra¹, Alisha Piazza¹, Ki Wook Jung¹, Mehdi Asheghi¹, Man Prakash Gupta², Edward Jih², Kenneth Goodson¹. ¹Stanford University, ²Ford Motor Company

I-5: HEAT PIPES AND VAPOR CHAMBERS I

Session Chairs: Dishit Parekh (IBM), Corey Wilson (Thermavant), Benjamin Alexander (Thermavant)

Thermal performance evaluation of a two-layer wick vapor chamber for high heat flux dissipation by air cooling (p143)

Shailesh Joshi¹, Feng Zhou¹, Ercan Dede¹, Danny Lohan¹, Srivathsan Sudhakar², Justin Weibel². ¹Toyota Research Institute, ²Purdue University

Development of ultra-thin thermal ground plane with high performance electroplated wick (p275)

Ian Hu¹, Hung-Hsien Huang¹, Po-Cheng Huang², Jui-Cheng Yu², Chien-Neng Liao², Meng-Kai Shih¹, David Tarng¹, CP Hung¹. ¹ASE Group, ²National Tsing Hua University

Vapor chamber with wickless condenser - thermal diode (p282)

George Damoulakis, Mohamad Gukeh, Theodore Koukoravas, Constantine Megaridis. University of Illinois at Chicago

SESSION TI-6: HEAT PIPES AND VAPOR CHAMBERS II

Session Chairs: Marc Bergendahl (IBM), Corey Wilson (Thermavant), Benjamin Alexander (Thermavant)

Thermal Performance of Pump-assisted Loop Heat Pipe using R245fa as a working (p136) Shyy-Woei Chang¹, Kuei-Feng Chiang², Fang-Chou Lin², Wei-Sheng Hung¹. ¹National Cheng Kung University, ²Asia Vita Components Co.

Effect of multiple heat sources and bend angle on the performance of sintered wicked heat pipes (p138) Joseph Phelim Mooney, Vanessa Egan, Ruairi Quinlan, Jeff Punch. University of Limerick

Thermal modeling of vapor chamber heat spreaders and model validation (p447) Pritish Parida¹, Ken Marston¹, Kevin Drummond¹, Levi Campbell¹, Yuji Saito², Thanh Long Phan², Xiao Ping Wu², Vijit Wuttijumnong². ¹IBM, ²Fujikura Thermal Technology

SESSION TI-7: THERMAL INTERFACE MATERIALS AND HEAT SPREADERS

Session Chairs: Anil Yuksel (IBM Corporation), Stephanie Allard (IBM)

Thermal characteristics of flexible heat spreaders in high power fanless notebooks (p118) Ravishankar Srikanth, Raghavendra Doddi, Kathiravan D, Prakash Kurma Raju. Intel Corp

Thermal properties of copper particles-filled polypropylene composites (p225)

Ashraf Alghanmi¹, Selvin Thomas¹, Aravinthan Gopanna², Majed Alrefae¹. ¹Yanbu Industrial College, ²Yanbu Technical Institute

Characterization of the thermal boundary resistance of a Ga₂O₃/4H-SiC composite wafer (p263) Yiwen Song¹, Bikramjit Chatterjee¹, Craig McGray², Sarit Zhukovsky², Jacob Leach³, Tina Hess³, Brian Foley¹, Sukwon Choi¹. ¹The Pennsylvania State University, ²Modern Microsystems, ³Kyma Technologies

Analytical, numerical and experimental study of phase change material for TIM2 application of high power server CPUs (p471)

David Shia and Jin Yang. Intel Corp

SESSION TI-8: TWO-PHASE COOLING APPLICATIONS

Session Chairs: Tim Fisher (UCLA), Chen Li (University of South Carolina)

Hotspot cooling performance of a submerged water jet via infrared thermometry (p135)

Tanvir Ahmed Chowdhury, Chance Brewer, Shawn Putnam. University of Central Florida

Heat transfer and two-phase flow regimes in manifolded microgaps: performance comparison between R245fa and FC-72 (p328)

David Deisenroth, Michael Ohadi, Avram Bar-Cohen. University of Maryland

Effect of CVD grown graphene monolayer thermal effusivity on phase change heat transfer in 2-D plate condition with highly wettable FC-72 (p466)

Ji Yong Kim, Kyung Mo Kim, In Cheol Bang. Ulsan National Institute of Science and Technology

SESSION TI-9: LED AND POWER ELECTRONICS THERMAL MANAGEMENT

Session Chairs: Yuanchen Hu (IBM), Chady Al Sayed (University Of Sherbrooke)

High resolution thermoreflectance imaging and numerical modeling of self-heating in GaN HEMT on SiC (p235) Assaad El Helou¹, Yubo Cui¹, Marko Tadjer², Karl Hobart², Peter Raad¹. ¹Southern Methodist University, ²Naval Research Lab

Enhanced thermal performance of high flux LED systems with two-phase immersion cooling (p376)

Ceren Cengiz, Ahmet Mete Muslu, Baris Dogruoz, Mehmet Arik. Ozyegin University

SESSION TI-10: HETEROGENEOUS INTEGRATION THERMAL MANAGEMENT

Session Chairs: Pritish Parida (IBM), Jeffrey Didion (NASA)

Active thermal management of automotive camera component (p187)

Wonkee Ahn, Yongyun Kim, Inkeun Ryu, Daeil Kim. LG Electronics

Thermal characteristics of integrated Fan-Out on Substrate (InFO_oS) packaging technology (p194) Chia-Hao Hsu, Yi-Jou Lin, Sheng-Liang Kuo, Yi-Hsuan Peng, Chi-Wen Pan, Tai-Yu Chen, Wen-Sung Hsu. MediaTek Inc

3D wafer-to-wafer bonding thermal resistance comparison: Hybrid Cu/dielectric bonding versus dielectric vialast bonding (p198)

Herman Oprins, Vladimir Cherman, Tomas Webers, Soon-Wook Kim, Joeri De Vos, Geert Van Der Plas, Eric Beyne. IMEC

Impact of chip, package, and set design on transient temperature in mobile application (p280) Jongkyu Yoo, Yunhyeok Im, Heeseok Lee, Young-Sang Cho, Taekeun An, Hoi-Jin Lee, Youngmin Shin. Samsung Electronics

SESSION TI-11: THERMAL ANALYSIS AND MODELING OF ELECTRONIC COMPONENTS

Session Chairs: Tuhin Sinha (IBM), Olivier DANIEL (Thales Corporate Engineering)

Application of stochastic deconvolution methods to improve the identification of complex BCI multi-port thermal RC networks (p137)

Valentin Bissuel¹, Eric Monier-Vinard^{1,2}, Quentin Dupuis^{1,2}, Olivier Daniel¹, Najib Laraqi², Jean-Gabriel Bauzin². ¹Thales Global Services, ²Paris Nanterre University

Effective substrate thermal conductivity modeling method extracted from detailed pattern for premium SOC packages (p312)

Seungtae Hwang, Bang Weon Lee, Taehwan Kim, Younghoon Hyun, Heejung Hwang, Seunggeol Ryu, Mina Choi, Youngdeuk Kim, Dan Oh. Samsung Electronics

Coupled electro-thermal analysis of permanent magnet synchronous motor for electric vehicles (p313) Amitav Tikadar, Nitish Kumar, Yogendra Joshi, Satish Kumar. Georgia Institute of Technology

Study on predicting the thermal impedance of memory devices based on database analysis and parametric simulation (p331)

Xiaopeng Qu, Amy Griffin, Hyunsuk Chun, Eiichi Nakano. Micron Technology

SESSION TI-12: COOLING FLUIDS

Session Chairs: Jimil Shah (3M), Cheng Chen (Facebook), Jin Yang (Intel)

Experimental study of heat transfer coefficient and pressure drop for supercritical carbon dioxide and water inside a microchannel (p109)

Anatoly Parahovnik, Mostafa Asadzadeh, Stephen Adeoye, Uday Manda, Yoav Peles. University of Central Florida

Rapid heating and cooling chamber for photonics junction measurement system (p157)

Gokberk Tarcin¹, Alper Saygin¹, Mete Muslu¹, Mete Budakli², Mehmet Arik¹. ¹Ozyegin University, ²Turkish-German University

Experimental evaluation of dielectric oil functionalized nanodiamond suspension under laminar flow regime (p236)

Aaron Bain¹, Ethan Languri¹, Jim Davidson², David Kerns², Lino Costa³. ¹Tennessee Tech University, ²International Femtoscience, ³University of Tennessee Space Institute

Ultra-low global warming potential heat transfer fluids for pumped two-phase cooling in HPC data centers (p385)

Nitin Karwa. Honeywell International

SESSION TI-13: EQUIPMENT COOLING

Session Chairs: Husam Alissa (Microsoft), Jin Yang (Intel), Yuehong Fan (Intel)

Improving thermal performance of high frequency power transformers using bobbinless transformer design (p183)

Anshuman Dey¹, Navid Shafiei², Rahul Khandekar², Wilson Eberle¹, Ri Li¹. ¹University of British Columbia, ²Alpha Technologies Ltd

Pool boiling inversion and hysteresis with femtosecond laser processed 304 stainless steel surfaces for heat transfer enhancement (p219)

Justin Costa-Greger, Alfred Tsubaki, Josh Gerdes, Mark Anderson, Craig Zuhlke, Dennis Alexander, Jeff Shield, George Gogos. University of Nebraska-Lincoln

Modelling and validation of a switched reluctance motor stator tooth with direct coil cooling (p325)

Jasper Nonneman^{1,2}, Stephan Schlimpert³, Ilya TJollyn^{1,2}, Michel De Paepe^{1,2}. ¹Ghent University, ²Flanders Make@UGent, ³Flanders Make

Phase change cooling of spacecraft electronics: terrestrial reference experiments prior to ISS microgravity experiments (p362)

Karthekeyan Sridhar¹, Ryan Smith¹, Vinod Narayanan², Sushil Bhavnani¹. ¹Auburn University, ²University Of California Davis

TRACK: SYSTEM LEVEL THERMAL MANAGEMENT

SESSION TII-1: DATA CENTER - TRANSIENT AND EFFICIENCY

Session Chairs: Michael Fish (US Army Research Laboratory), Liang Gong (China University of Petroleum), Vibhash Jha (Dell Technologies)

Transient thermal analysis of an air-conditioned IT rack with a thermal buffering unit (p148)

James VanGilder, Wei Tian, John Bean. Schneider Electric

Energy audit of data centers and server rooms on an academic campus: Impact of energy conservation measures (p178)

Thirumalesha Gudluru, Sorochukwu Okam, Ameya Upadhyay, Fabio Battaglia, Farah Singer, Michael Ohadi. University of Maryland

Artificial neural network based prediction of control strategies for multiple air cooling units in a raised-floor data center (p392)

Vibin Shalom Simon, Ashwin Siddarth, Dereje Agonafer. The University of Texas at Arlington

SESSION TII-2: DATA CENTER - AIR FLOW

Session Chairs: Yin Hang (Facebook)

Experimental analysis of server fan control strategies for improved data center air-based thermal management (p130)

Jeffrey Sarkinen¹, Rickard Brannvall^{1,2}, Jonas Gustafsson¹, Jon Summers^{1,3}. ¹Research Institutes of Sweden, ²Lulea University of Technology, ³University of Leeds

A compact rack model for data center CFD modeling (p147)

James VanGilder, Wei Tian, Yatharth Vaishnani, Michael Condor. Schneider Electric

Fractal pattern effects on natural convection heat transfer and flow characteristics (p254)

Khashayar Ebrahimi¹, Sasan Ebrahimi¹, Khosrow Ebrahimi². ¹Simon Fraser University, ²Minnesota State University

Experimental analysis of different measurement techniques of server-rack airflow predictions towards proper DC airflow management (p296)

Mohammad Tradat¹, Ghazal Mohsenian¹, Yaman Manaserh¹, Bahgat Sammakia¹, Dave Mendo², Husam Alissa³. ¹ Binghamton University, ²Comcast, ³Microsoft

A comprehensive CFD study of tile flow rate distribution in a compact data center laboratory (p307)

Beichao Hu¹, Cheng-Xian Lin¹, Dhaval Patel², Yogendra Joshi², Jim VanGilder³, Mark Seymour⁴. ¹Florida International University, ²Georgia Institute of Technology, ³Schneider Electric, ⁴Future Facilities

SESSION TII-3: DATA CENTER - THERMOSYPHON

Session Chairs: Ronald Warzoha (United States Naval Academy)

An advanced power and thermal optimized high density rack solution for data center energy efficiency (p212)

Jie Zhao¹, Xianguang Tan¹, Yajun Pan¹, Yong Sheng¹, Hongmei Liu¹, Jiajun Zhang¹, Jing Liu², Jun Zhang², Carrie Chen², Nish Ahuja². ¹Baidu, ²Intel Corp

ITherm 2020 Virtual

Live Events on July 21st – July 23rd

General thermosyphon simulation code for electronics cooling applications (p269)

Jackson Braz Marcinichen¹, Raffaele Luca Amalfi², Filippo Cataldo³, John Richard Thome¹. ¹JJ Cooling Innovation Sarl – EPFL, ²Nokia Bell Labs, ³Provides Metalmeccanica Srl

Implementation of passive two-phase cooling to an entire server rack (p270)

Filippo Cataldo¹, Raffaele Luca Amalfi², Jackson Braz Marcinichen³, John Richard Thome³. ¹Provides Metalmeccanica Srl, ²Nokia Bell Labs, ³JJ Cooling Innovation Sarl - EPFL

Experimental characterization of a server-level thermosyphon for high-heat flux dissipations (p271)

Raffaele Luca Amalfi¹, Filippo Cataldo², Jackson Braz Marcinichen³, John Richard Thome³. ¹Nokia Bell Labs, ²Provides Metalmeccanica Srl, ³JJ Cooling Innovation Sarl - EPFL

SESSION TII-4: LIQUID COOLING - BOILING, CORROSION, AND FLUIDS

Session Chairs: Darin Sharar (US Army Research Laboratory), Damena Agonafer (Washington University)

Localized pool boiling and condensation experiments over functional CPU: Optimizing the overall thermal resistance via different heat transfer scenarios (p144)

Chady Al Sayed¹, Omidreza Ghaffari¹, Francis Grenier², Wei Tong¹, Martin Bolduc³, Jean Francois Morissette¹, Simon Jasmin², Julien Sylvestre¹. ¹University Of Sherbrooke, ²Systemex Energies Inc, ³Varitron Technologies Inc

A novel concept methodology of indirect cold plate liquid cooling design for data center in CPU socket area (p207)

Ruiyu Sun¹, Qingming Fu¹, Guofeng Chen¹, Yongwei Li¹, Shifeng Wang¹, Jun Zhang², Yuehong Fan², Yuyang Xia², Nishi Ahuja², Zhongru Song², Qing Lu², Jinwen Yang². ¹Jingdong Cloud Computing Co, ²Intel Corp

Corrosion in liquid cooling systems with water-based coolant - Part 1: Flow loop design for reliability tests (p310) Girish Kini¹, Choong-Un Kim², H. Madanipour², Je-Young Chang¹, Amitesh Saha¹, Aravindha Antoniswamy¹, Iolanda Klein¹, Michael Jorgensen¹, Minseok Ha¹, Peng Li¹, Berhanu Wondimu¹, Devdatta Kulkarni¹. ¹Intel Corp, ²University of Texas at Arlington

Corrosion in liquid cooling systems with water-based coolant – Part 2: Corrosion reliability testing and failure model (p311)

Choong-Un Kim¹, Geng Ni¹, Girish Kini², Je-Young Chang², Amitesh Saha², Aravindha Antoniswamy², Iolanda Klein², Michael Jorgensen², Minseok Ha², Peng Li², Berhanu Wondimu², Dev Kulkarni². ¹University of Texas at Arlington, ²Intel Corp

SESSION TII-5: LIQUID COOLING - IMMERSION AND IMPINGEMENT

Session Chairs: Joshua Gess (Oregon State University), Bahman Abasi (Oregon State)

Impingement cooling using a virtual orifice synthetic jet (p134)

Monique Embury, Stephen Solovitz. Washington State University Vancouver

Physically-motivated Figure of Merit (FOM) assessing the cooling performance of fluids suitable for the direct cooling of electrical components (p142)

Claas Ehrenpreis¹, Hakim El Bahi², Huihui Xu¹, Gregoire Roux², Reinhold Kneer¹, Wilko Rohlfs¹. ¹RWTH Aachen University, ²TOTAL Marketing and Services

Immersion cooled ARM-based computer clusters towards low-cost high-performance computing (p203) Huseyin Bostanci¹, Mohammed Awaizulla Shareef¹, Phil E Tuma². ¹University of North Texas, ²MMM

Effects of jet to wall spacings on heat transfer characteristics and flow fields of turbulently impinging nozzled jets on hot silicon (p355)

Prabhakar Subrahmanyam, Ying-Feng Pang, Amy Xia, Muhammad Ahmad. Intel Corp

Confined immersion cooling in microscale gaps (p394)

Albraa Alsaati, Justin A Weibel, Amy Marconnet. Purdue University

SESSION TII-6: LIQUID COOLING - ADVANCED MODELING

Session Chairs: Akhilesh Rallabandi (Intel Corporation), Gavin Stanley (Microsoft)

Numerical study of multi hot spot GaN cooling in a cold plate considering different flow networks (p104) Murat Parlak¹, Ergun Ors¹, Abuzer Ozsunar². ¹Aselsan Inc, ²Gazi University

Thermal modeling of electrical machines with advanced fluid cooling (p171)

Huihui Xu¹, Kunpeng Lin¹, Claas Ehrenpreis¹, Gregoire Roux², Rik W. De Doncker¹. ¹RWTH Aachen University, ²Total Marketing and Services

Optimization of manifold microchannel heat sink based on equivalent resistance model (p201)

Weihao Li^{1,2}, Longguang Zhu², Feng Ji³, Jinling Yu¹, Yufeng Jin², Wei Wang². ¹Fuzhou University, ²Peking University, ³Beijing Institute of Remote Sensing Equipment

SESSION TII-7: THERMAL SYSTEMS - SEMICONDUCTOR

Session Chairs: Brian Donovan (United States Naval Academy), Sachin Deshmukh (Intel Corporation)

Numerical investigation of a novel cross-media heat exchanger (iCMHX) for gas-to-liquid cooling applications (p228)

Gargi Kailkhura, Raphael Kahat Mandel, Amir Shooshtari, Michael Ohadi. University of Maryland

System-level thermal modeling and its significance in electronics packaging (p247)

Sevket Umut Yuruker, Raphael Kahat Mandel, Patrick McCluskey, Michael Ohadi. University of Maryland

Numerical analysis of two-phase cross-flow heat exchanger for high power density equipment in data centers under dynamic conditions (p250)

Carol Caceres, Alfonso Ortega, Aaron Wemhoff, Gerard Jones. Villanova University

Thermal characterization methodology and cooling performance for extended volume air cooling (EVAC) heat sinks (p352)

Priyanka Tunuguntla, Guixiang (Ellen) Tan, Evan Chenelly. Intel Corp

SESSION TII-8: THERMAL SYSTEMS - AUTOMOTIVE

Session Chairs: David Huitink (University of Arkansas)

A dynamic simulation framework for the analysis of battery electric vehicle thermal management systems (p141)

Tyler Shelly, Justin Weibel, Davide Ziviani, Eckhart Groll. Purdue University

A thermal management design methodology for advanced power electronics utilizing genetic optimization and additive manufacturing techniques (p145)

Andrew Michalak, Shawkat Zaman, Omri Tayyara, Miad Nasr, Carlos Da Silva, James Mills, Olivier Trescases, Cristina Amon. University of Toronto

A comprehensive thermal model for system-level electric drivetrain simulation with respect to heat exchange between components (p223)

Bicheng Chen, Carsten Wulff, Konstantin Etzold, Patrick Manns, Georg Birmes, Jakob Andert, Stefan Pischinger. RWTH Aachen University

Car environment conditions vs. thermal chamber conditions (p329)

Cristina Draga. University Politehnica Timisoara and Continental Automotive Romania SRL

SESSION TII-9: THERMAL SYSTEMS - EDGE

Session Chairs: Xiaopeng Qu (Micron Technology)

Hardware design and thermal management of video accelerator cards in IOT applications (p257) Eng Kwong Lee, Chin Seng Soon, Soon Choy Wong, Amyrul Azuan Mohd Bahar. Intel Corp

A novel extended temperature edge server system architecture and design for ITS RSCU (p380)

Zhenghui Wu¹, Xiaojin Fan¹, Jie Zhao¹, Feng Deng¹, Hechun Zhang¹, Gang Chen¹, Hongmei Liu¹, Jiajun Zhang¹, Jun Zhang², Min Wu², Yuyang Xia², Chris Du², Chao Zhou², Feng Jiang², Jialiang Xu², Dan Liu², Carrie Chen², Candy He², Sean Kuo², Liwen Guo³, Jiahong Wu³, Tzuchun Hung³, Minghua Duan³, Lianjun Zhao³, Chiming Jao³, Vinson Lin³, Robert Yuan³. ¹Baidu, ²Intel Corp, ³Foxconn

Systematic approach in Intel SoC (System on Chip) thermal solution design using CFD (Computational Fluid Dynamics) simulation (p455)

Chun Howe (CH) Sim, Chew Ching Lim, Vijay Hoskoti. Intel Microelectronics

SESSION TII-10: THERMAL SYSTEMS - BATTERY THERMAL MANAGEMENT

Session Chairs: Peter DeBock (GE Global Research)

An electrochemical-thermal coupled gas generation and overcharge-to-thermal-runaway model for large-format lithium ion battery (p158)

Jiajun Xu¹, Christopher Hendricks². ¹University of the District of Columbia, ²Naval Surface Warfare Center

Air-cooled battery-pack thermals and capacities under various operating temperatures and processes (p314) Yuanchen Hu¹, Xiangfei Yu¹, Milnes David¹, Pinghan Chen², Steven Ahladas¹, Noah Singer¹. ¹IBM Systems, ²AcBel Polytech Inc.

Transient CFD heat transfer simulation model of air-cooled battery packs (p316) Yuanchen Hu, Xiangfei Yu, Milnes David, Steven Ahladas, Noah Singer. IBM Systems

Transient thermal analysis on cell stack design for lithium ion battery backup unit in data center (p370) Shuai Shao, Tianyi Gao, Huawei Yang, Jie Zhao, Jiajun Zhang. Baidu

SESSION TII-11: THERMAL SYSTEMS - MOBILE DEVICES

Session Chairs: Columbia Mishra (Intel Corporation), Yuling Niu (Huawei)

Application of full and approximate flow models in topology optimisation of passive cooling for electronics cabinets (p116)

Joe Alexandersen. University of Southern Denmark

Smart phone based host level modeling for thermal performance prediction of next generation microSD cards (p182)

Sundarraj Chandran, Apratim Sanyal, Ning Ye, Rajesh Ravnikar, Abhishek Azad. Western Digital

Thermal aware 3-D floorplanning on multi-stacked board of smart phone (p318) Youngsang Cho, Heejung Choi, Yunhyeok Im, Heeseok Lee, Hoi-Jin Lee. Samsung Electronics

Relative thermal burst performance comparison with the use of copper and silver-diamond composite as cold plate materials below heat pipes in notebooks (p365) Sankarananda Basak. Intel Corp.

SESSION TII-12: THERMAL SYSTEMS - MOTORS AND HIGH POWER ELECTRONICS

Session Chairs: Peter DeBock (GE Global Research)

Implementing photosensitive glass as a solution in thermal management applications (p110) Sierra Jarrett, Kyle McWethy, Jeb Flemming. Three-D Glass Solutions

Comparison between the theoretical, experimental and numerical thermal conductivity of composite thermal interface materials using copper metal foam (p217)

Shinya Kawakita¹, Minami Teranishi², Yuki Ishizaka³, Kazuyoshi Fushinobu³. ¹Hitachi Automotive Systems Ltd, ²Hitachi Ltd, ³Tokyo Institute of Technology

Cooling of integrated electric motors (p345)

Zhaoxi Yao, Yonatan Saadon, Raphael Mandel, Patrick McCluskey. University of Maryland

SESSION TII-13: SOLID-LIQUID PHASE CHANGE - MATERIALS AND MODELING

Session Chairs: Patrick Shamberger (Texas A&M)

Towards time-scale matched composites: system-level modeling of organic and metallic phase-change material composites using a two-temperature model (p167)

Justin Wang, Michael Fish, Morris Berman, Melissa McCann. Army Research Laboratory

Forward selection methodology for phase change material composite optimization (p240)

Alison Hoe, Alexandra Easley, Michael Deckard, Jonathan Felts, Patrick Shamberger. Texas A&M University

A reduced-order model for analyzing heat transfer in a thermal energy storage module (p245) Karan Gohil¹, Michael Deckard², Patrick Shamberger², Neera Jain¹. ¹Purdue University, ²Texas A&M University

Nanoparticle enhanced crystallization of sorbitol PCMs for latent heat and temperature control (p256) David Huitink, Joshua Kasitz, Andres Vargas. University of Arkansas

SESSION TII-14: SOLID-LIQUID PHASE CHANGE - INTEGRATION

Session Chairs: Jingru Benner (Western New England University)

Thermal performance of PCM-based heat sink with partially filled copper oxide coated metal-foam for thermal management of microelectronics (p117)

Adeel Arshad, Mark Jabbal, Yuying Yan. University of Nottingham

Topology optimized phase change material integrated heat sinks and validation (p208)

Andres Vargas, David Huitink, Ange Christian Iradukunda, Conner Eddy. University of Arkansas

Feasibility study of active thermal energy storage for on-chip transient mitigation (p358)

Michael Fish, US Army Research Laboratory

SESSION TII-15: AIR COOLING - EXTREME, HEAT SINKS, AND FANS

Session Chairs: Ali Heydari (NVIDIA), Palkesh Jain (Qualcomm)

Electrodynamic fan blade for cooling small devices (p107)

Simon Strohmeyr, Sabri Baazouzi, Bernd Gundelsweiler. University of Stuttgart

Cooling heat sinks by forced and natural Convection in microelectronic packages: Numerical modeling and experimental hermal studies (p120)

Papa Momar Souare¹, Mamadou Kabirou Toure¹, Benoit Foisy², Eric Duchesne², Julien Sylvestre¹. ¹University of Sherbrooke, ²IBM Bromont

Air flow inversion for enhanced electronics cooling in additively manufactured air channels (p149) Joshua Tompkins and David Huitink. University of Arkansas

TRACK: EMERGING TECHNOLOGIES AND FUNDAMENTALS

SESSION E-1: NUMERICAL METHODS, NANO-TO-MACRO SCALE I

Session Chairs: Amir Shooshtari (University of Maryland), Ajay Vadakkepatt (Qualcomm), Arjang Shahriari (Qualcomm)

Topology optimization of manifold microchannel heat sinks (p160)

Yuqing Zhou, Tsuyoshi Nomura, Ercan Dede. Toyota

Predicting notebook heat exchanger performance using a neural network approach (p284) Ellann Cohen, Genevieve Gaudin, Ruander Cardenas. Intel

Parameter-free shape optimization of heat sinks (p337)

Ruochun Zhang and Xiaoping Qian. University of Wisconsin-Madison

Numerical analysis of structured ribbed channels for electronic cooling applications (p397)

Daniel Huynh and Shadi Mahjoob. California State University Northridge

SESSION E-2: NUMERICAL METHODS, NANO-TO-MACRO SCALE II

Session Chairs: Huseyin Bostanci (University of North Texas), Eric Dede (Toyota), Amy Marconnet (Purdue University)

A comparative study on reduced system thermal models for transient simulations (p156)

Javed Shaikh, Mark Gallina, Bijendra Singh. Intel

Thermal sensor placement based on meta-model enhancing observability and controllability (p191)

Yunhyeok Im¹, Wook Kim¹, Taekeun An¹, Heeseok Lee¹, Young-Sang Cho¹, Jongkyu Yoo¹, Hoi-Jin Lee¹, Youngmin Shin¹, Myunghoon Lee², Vamsi Krishna Yaddanapudi². ¹Samsung Electronics, ²ANSYS

Temperature-to-power mapping for smartphones (p196)

Hong-Wen Chiou¹, Yu-Min Lee¹, Sheng-Chung Hsu¹, Guan-Jia Chen¹, Chi-Wen Pan², Tai-Yu Chen². ¹National Chiao Tung University, ²MediaTek Inc

SESSION E-3: ADDITIVE MANUFACTURING I

Session Chairs: Farah Singer (University of Maryland), Martinus Adrian Arie (University of Maryland)

Single-phase cooling performance of a topology optimized and additively-manufactured multi-pass branching microchannel heat sink (p298)

Shailesh Joshi¹, Ziqi Yu¹, Hacin Sennoun², Joseph Hampshire², Ercan Dede¹. ¹Toyota, ²GE Additive

Process development for additive fabrication of z-axis interconnects in multilayer circuits (p434)

Pradeep Lall¹, Nakul Kothari¹, Kartik Goyal¹, Jinesh Narangaparambil¹, Scott Miller². ¹Auburn University, ²NextFlex

Sintering process conditions for additive printing of multi-layer circuitry aerosol-jet process in conjunction with nanoparticle ink (p435)

Pradeep Lall¹, Jinesh Narangaparambil¹, Ved Soni1, Scott Miller². ¹Auburn University, ²NextFlex

Process-consistency in printed layers in multi-layer substrate using aerosol jet technology (p449) Pradeep Lall¹, Kartik Goyal¹, Kyle Schulze¹, Scott Miller². ¹Auburn University, ²NextFlex

SESSION E-4: ADDITIVE MANUFACTURING II

Session Chairs: Herman Oprins (Imec), David Deisenroth (NIST), Xuhui Feng (NREL)

Additively manufacturing nitinol as a solid-state phase change material (p344)

Darin Sharar¹, Adam Wilson¹, Asher Leff¹, Andrew Smith², Kadri Atli³, Alaa Elwany³, Raymundo Arroyave³, Ibrahim Karaman³. ¹US Army Research Laboratory, ²US Naval Academy, ³Texas A&M University

Additively printed multi-material temperature sensor realized using screen-printing (p428)

Pradeep Lall, Kartik Goyal. Auburn University

Process development and performance analysis of additively printed humidity sensor using aerosol jet printing (p436)

Pradeep Lall and Jinesh Narangaparambil. Auburn University

Process development for printing z-axis interconnects in multilayered flexible substrates (p450)

Pradeep Lall¹, Ved Soni¹, Jinesh Narangaparambil¹, Kyle Schulze¹, Scott Miller². ¹Auburn University, ²NextFlex

SESSION E-5: FLEXIBLE ELECTRONICS

Session Chairs: Xiaopeng Qu (Micron Technology), Brian Donovan (United States Naval Academy), Jeffrey Didion (NASA)

Effect of dynamic folding with varying fold orientations and C-rates on flexible power source capacity degradation (p426)

Pradeep Lall¹, Ved Soni¹, Scott Miller². ¹Auburn University, ²NextFlex

Flex-to-install application performance of power sources subjected to varying C-rates and depths of charge (p427)

Pradeep Lall¹, Ved Soni¹, Scott Miller². ¹Auburn University, ²NextFlex

Study on folding-reliability of wearable biometric band (p442)

Pradeep Lall¹, Hyesoo Jang¹, Curtis Hill², Libby Creel². ¹Auburn University, ²NASA MSFC

Correlation of accelerated tests with human body measurements for flexible electronics in wearable applications (p444)

Pradeep Lall¹, Tony Thomas¹, Jinesh Narangaparambil¹, Kartik Goyal¹, Hyesoo Jang¹, Vikas Yadav¹, Wei Liu². ¹Auburn University, ²AU-VCOM College Medicine

SESSION E-6: SINGLE-/TWO-PHASE CONVECTION IN MICROCHANNELS AND JETS

Session Chairs: Shadi Mahjoob (California State University Northridge), Harish Ganapathy (Intel)

Theoretical investigation of boundary layer behavior and heat transfer of supercritical carbon dioxide (sCO₂) in a microchannel (p108)

Uday Manda, Anatoly Parahovnik, Yoav Peles. University of Central Florida

Investigation of surface aging effects on the repeatability of saturated pool boiling heat transfer (p150) Ahmed Elkholy, Roger Kempers. York University

Role of surface texturing on heat transfer coefficient enhancement in spray impingement cooling (p238) Sankarganesh Muthukrishnan, Vinod Srinivasan. University of Minnesota

SESSION E-7: NOVEL MEASUREMENTS, INSTRUMENTATION AND EXPERIMENTAL TECHNIQUES I

Session Chairs: Jungwan Cho (Sungkyunkwan University), Ronald Warzoha (United States Naval Academy)

Investigation on reading discrepancy of type T and type J thermocouples (p105) Wenbin Tian, Michael Berktold, Casey Carte, Ellen Tan. Intel

Pattern continuity check approach to model effective thermal conductivity of PCB (p190) Youngsang Cho, Younghoon Hyun, Yunhyeok Im, Jongkyu Yoo, Hoijin Lee, Youngmin Shin. Samsung Electronics

Standard characterization techniques for inorganic phase change materials (p227)

Yuzhan Li, Navin Kumar, Tim Laclair, Kyle Gluesenkemp. Oak Ridge National Laboratory

SESSION E-8: NOVEL MEASUREMENTS, INSTRUMENTATION AND EXPERIMENTAL TECHNIQUES II

Session Chairs: Yoonjin Won (UC-Irvine), Joshua Gess (Oregon State University), Amy Marconnet (Purdue University)

A novel thermal mapping technique using nano-confinement assisted quantum dots for transient cooling applications (p246)

Khan Mohammad Rabbi, Christopher Borden, Shawn Putnam. University of Central Florida

Health monitoring and feature vector identification of failure for SAC305 Solder PCBs under shock loads up to 10,000g (p443)

Pradeep Lall¹, Tony Thomas¹, Ken Blecker². ¹Auburn University, ²US Army CCDC-AC

Comparative analysis of package warpage using confocal method and digital image correlation (p458) Chongyang Cai, Ke Pan, Junbo Yang, Seungbae Park. Binghamton University

SESSION E-9: EMBEDDED THERMAL MANAGEMENT

Session Chairs: Luca Amalfi (Nokia Bell Labs), Anil Yuksel (IBM)

The investigation of the silicon fabricated balanced shunt micro pin fins cold plate for high heat flux devices (p177)

Qingbao Ren, Huiyu Yu, Yuanyang Liu, Zhenyu Wang. Peking University

Mechanical design and reliability of gold-tin eutectic bonding for silicon-based thermal management devices (p393)

Farid Soroush¹, Ki Wook Jung¹, Madhusudan Iyengar², Chris Malone², Mehdi Asheghi¹, Kenneth E Goodson¹. ¹Stanford University, ²Google

A cascaded multi-core vapor chamber for intra-lid heat spreading in heterogeneous packages (p278) Soumya Bandyopadhyay, Amy Marconnet, Justin Weibel. Purdue University

SESSION E-10: EMERGING MATERIALS AND FABRICATION TECHNIQUES

Session Chairs: Kyle Gluesenkamp (Oak Ridge National Laboratory), Abhi Sirimamilla (Microsoft)

An innovative way to make anisotropic thermal interface materials (p132)

Marie-Audrey Raux, Per Anker Hassel, Linn Sorvik, Phillip Mayhew, Henrik Hemmen. CondAlign AS

ITherm 2020 Virtual

Live Events on July 21st – July 23rd

Analyzing the distribution of microencapsulated organic phase change materials embedded in a metallic matrix (p224)

Melissa McCann¹, Michael Fish², Lauren Boteler², Damena Agonafer¹. ¹Washington University in St Louis, ²Army Research Laboratory

Effects of boundary conditions on the dynamic response of a phase change material (p248)

Patrick Shamberger¹, Alison Hoe¹, Michael Deckard¹, Michael Barako². ¹Texas A&M University, ²Northrup Grumman

Evolution of high strain rate mechanical properties of SAC-R with high temperature storage at 50°C with high operating temperatures (p446)

Pradeep Lall¹, Mrinmoy Saha¹, Jeff Suhling¹, Ken Blecker². ¹Auburn University, ²US Army CCDC-AC

SESSION E-11: THERMAL TRANSPORT IN NANOTECHNOLOGY

Session Chairs: Amy Marconnet (Purdue University), Jorge Padilla (Google)

Measurements of thermal boundary conductance at α -GeTe/c-GeTe interfaces (p268)

Ronald Warzoha¹, Brian Donovan¹, Ionatan Soule¹, Laura Ruppalt², James Champlain¹. ¹US Naval Academy, ²Naval Research Laboratory

Interface density effects on cross-plane thermal conductance of nanolaminate thin films (p283)

Adam Wilson¹, Ronald Warzoha², Darin Sharar¹, Andrew Smith². ¹US Army Research Laboratory, ²US Naval Academy

Thermal conductivity of β -Ga₂O₃ thin films grown by molecular beam epitaxy (p363)

Diego Vaca¹, Luke Yates¹, Neeraj Nepal², Scott Katzer², Brian Downey², Virginia Wheeler², David Meyer², Samuel Graham¹, Satish Kumar¹. ¹Georgia Institute of Technology, ²US Naval Research Laboratory

TRACK: MECHANICS AND RELIABILITY

SESSION M-1: SOLDER JOINT RELIABILITY I

Session Chairs: Przemyslaw Gromala (Robert Bosch GmbH)

Effect of varying amplitude cycling on SAC-Bi solder joint fatigue (p302)

Minghong Jian, Xin Wei, Sa'd Hamasha, Jeff Suhling, Pradeep Lall. Auburn University

Effect of microscale heterogeneities and stress state on the mechanical behavior of solder joints (p346) Abhishek Deshpande, Qian Jiang, Abhijit Dasgupta. University of Maryland

The effect of misaligned passive component on fatigue life of solder joints and solder shape (p467) Jonghwan Ha, Ke Pan, Huayan Wang, Daehan Won, SB Park. Binghamton University

SESSION M-2: SOLDER JOINT RELIABILITY II

Session Chairs: Patrick McCluskey (University of Maryland College Park)

Fatigue performance of doped SAC solder joints in BGA assembly (p301)

Xin Wei, Sinan Su, Sa D Hamasha, Haneen Ali, Jeff Suhling, Pradeep Lall. Auburn University

Effect of fatigue on individual SAC305 solder joints reliability at elevated temperature (p305) Mohammed Abueed, Raed Alathamneh, Sad Hamasha, Jeff Suhling, Pradeep Lall. Auburn University

Effect of 100°C aging for periods of up to 120-days on high strain rate properties of SAC305 alloys (p437) Pradeep Lall¹, Vishal Mehta¹, Jeff Suhling¹, Ken Blecker². ¹Auburn University, ²US Army CCDC-AC

SESSION M-3: SOLDER JOINT RELIABILITY III

Session Chairs: A R Nazmus Sakib (NXP Semiconductors)

Parametric design study of a power electronics package for improving solder joint reliability (p303) Paul Paret, Douglas DeVoto, Joshua Major, Sreekant Narumanchi. National Renewable Energy Laboratory

High strain rate properties of SAC305 at cold operating temperatures down to -65°C (p438) Pradeep Lall¹, Vishal Mehta¹, Jeff Suhling¹, Ken Blecker². ¹Auburn University, ²US Army CCDC-AC

Low temperature high strain-rate material properties for SAC-Q leadfree alloys (p440) Pradeep Lall¹, Vikas Yadav¹, Jeff Suhling¹, David Locker². ¹Auburn University, ²US ARMY CCDC AvMC

SESSION M-4: SOLDER JOINT RELIABILITY IV

Session Chairs: Abhijit Dasgupta (UMD)

The effect of Bi on the mechanical properties of aged SAC solder joint (p304)

Mohamed El Amine Belhadi, Francy John Akkara, Raed Alathamneh, Mohammed Abueed, Sa 'd Hamasha, Haneen Ali, Jeff Suhling, Pradeep Lall. Auburn University

Effect of thermal aging on the evolution of Anand parameters for SAC105 leadfree alloys operating at cold temperatures down to -55 C (p439)

Pradeep Lall¹, Vikas Yadav¹, Jeff Suhling¹, David Locker². ¹Auburn University, ²US Army CCDC-AC

SESSION M-5: PACKAGE AND INTERCONNECT RELIABILITY I

Session Chairs: Pradeep Lall (Auburn University)

A mechanistic model for plastic metal line ratcheting induced BEOL cracks in molded packages (p264)

Chun-Pei Chen¹, Yaxiong Chen¹, Ganesh Subbarayan¹, Hung-Yun Lin², Siva Gurrum². ¹Purdue University, ²Texas Instruments

Effect of changes in creep properties due to sintering on fatigue life of Ag sintering bonding layer in power module (p286)

Iori Yaguchi, Sho Teradaira, Leo Umino, Qiang Yu. Yokohama National University

Simulation method of ultra-thin silicon wafers warpage (p333)

Mei-Ling Wu, Wei-Jhih Wong. National Sun Yat-Sen University

Modelling indium interconnects for ultra fine-pitch focal plane arrays (p468)

Stoyan Stoyanov¹, Chris Bailey¹, Rhys Waite², Christopher Hicks², Terry Golding³. ¹University Of Greenwich, ²Microchip Technology Inc ³Amethyst Research Inc

SESSION M-6: PACKAGE AND INTERCONNECT RELIABILITY II

Session Chairs: David Huitink (University of Arkansas)

Fabrication of copper compliant interconnects on a printed circuit board: An additive approach (p161) Tumininu Olatunji, Mahsa Montazeri, David Huitink. University of Arkansas

Assembly reliability of 3D Stacks under thermal cycles (p170)

Reza Ghaffarian. California Institute of Technology

Warpage simulation and analysis for panel level fan-out package (p322)

Jia-Shen Lan, Mei-Ling Wu. National Sun Yat-Sen University

Simulation and analysis of quad flat no-lead package (QFN) under moisture, and thermal stress (p334)

Chung-Kuei Wang, Mei-Ling Wu. National Sun Yat-Sen University

SESSION M-7: AGING OF SOLDER JOINT I

Session Chairs: David Huitink (University of Arkansas)

Effect of different thermal cycling profiles on the mechanical behavior of SAC305 lead free solder (p332) Mohammad Al Ahsan, S M Kamrul Hasan, Abdullah Fahim, Jeffrey Suhling, Pradeep Lall. Auburn University

Mechanical behavior evolution of SAC+Bi lead free solder exposed to thermal cycling (p359) S M Kamrul Hasan, Abdullah Fahim, Jeffrey Suhling, Sad Hamasha, Sa'd Hamasha, Pradeep Lall. Auburn University

Isothermal aging dependent Anand parameters of SAC305 lead free solder at extreme high temperatures (p398) KM Rafidh Hassan, Mohammad Alam, Jing Wu, Jeffrey Suhling, Pradeep Lall. Auburn University

Microstructural evolution of SAC305 BGA joints during extreme high temperature aging (p399) KM Rafidh Hassan, Mohammad Alam, Jing Wu, Jeffrey Suhling, Pradeep Lall. Auburn University

SESSION M-8: AGING OF SOLDER JOINT II

Session Chairs: David Huitink (University of Arkansas)

Cyclic stress-strain and constitutive behaviors of SAC-Bi-Ni-Sb solder alloys during fatigue testing (p402)

Mohd Aminul Hoque, Mohammad Ashraful Haq, Md Mahmudur Chowdhury, Jeffrey Suhling, Pradeep Lall. Auburn University

Modeling deformation behavior of multiple grained SAC305 solder joints (p404)

Debabrata Mondal, Abdullah Fahim, Jeffrey Suhling, Pradeep Lall. Auburn University

Investigation and comparison of microstructural changes in SAC and SAC+X solders exposed to short-term aging (p405)

Jing Wu, Mohammad Alam, KM Rafidh Hassan, Jeffrey Suhling, Pradeep Lall. Auburn University

SESSION M-9: RELIABILITY OF ADVANCED PACKAGING

Session Chairs: Pradeep Lall (Auburn University)

The effect of the stiffness of soft materials on hemiwicking performance (p335)

Thomas Germain and Shawn Putnam. University of Central Florida

Thermal expansion phenomena and influence on damping coefficient and stiffness variation for MEMS kinematic quantity microsensors and microactuators (p390) Jacek Nazdrowicz, Andrzej Napieralski. Lodz University of Technology

succe nuzurowicz, Anarzej napieralski. Louz oliniersky of recimology

Effect of voids on thermo-mechanical reliability of QFN solder joints (p451) Pradeep Lall, Nakul Kothari. Auburn University

Shock performance enhancement of a container for rack server (p462)

Pengcheng Yin, Huayan Wang, Jiefeng Xu, Van Lai Pham, Seungbae Park. Binghamton University

SESSION M-10: MATERIALS CHARACTERISTICS AND ACCELERATING TESTING

Session Chairs: Kenneth Blecker (CCDC AC)

Fabrication of a low cost flexible micro-device for measuring fiber thermal conductivity (p151)

Andrew Latulippe¹, Yassine Ait-El-Aoud¹, Richard Osgood², Hongwei Sun¹. ¹University of Massachusetts Lowell, ²US Army Combat Capabilities Development Command

Compatibility analysis of liquid gallium and common packaging metals for applications in electronic component thermal management (p174)

Rachel McAfee¹, Michael Fish², David Baker², Joshua Gess¹, Lauren Boteler². ¹Oregon State University, ²US Army Research Laboratory

Disk failure early warning based on the characteristics of customized SMART (p210)

Jian Zhao¹, Yongzhan He¹, Hongmei Liu¹, Jiajun Zhang¹, Bin Liu¹, Jun Zhang², Wenqing Lv², Alex Zhou², Feng Jiang², Jing Liu², Ahujia Nishi². ¹Baidu, ²Intel Corp

Comparison and verification of acceleration factor of temperature cycle test by empirical formula and CAE analysis (p293)

Shohei Ohashi, Taiki Ogawa, Qiang Yu. Yokohama National University

SESSION M-11: CHIP PACKAGE INTERACTION

Session Chairs: Przemyslaw Gromala (Robert Bosch GmbH)

Measurement of the temperature dependence of the piezoresistive coefficients of 4H silicon carbide (p336) Jun Chen, Jeffrey Suhling, Richard Jaeger. Auburn University

Nanomechanical characterization of various materials within PBGA packages subjected to thermal cycling loading (p354)

Abdullah Fahim, S M Kamrul Hasan, Jeffrey Suhling, Pradeep Lall. Auburn University

SESSION M-12: RELIABILITY UNDER HARSH ENVIRONMENTS

Session Chairs: Steven Dunford (Schlumberger)

Vibration at low and extreme cold temp for QFN assembly reliability (p169) Reza Ghaffarian. California Institute of Technology

Effect of combining solder pastes with SAC305 spheres on component reliability in harsh thermal cycling (p300) Francy John Akkara, Cong Zhao, Arvind Sreenivasan, Sinan Su, Mohammed Abueed, Sa'd Hamasha, Haneen Ali, Jeff Suhling, Pradeep Lall. Auburn University

Effect of shock angle on solder-joint reliability of potted assemblies under high-G shock (p431) Pradeep Lall¹, Aathi Pandurangan¹, Kalyan Dornala¹, Jeff Suhling¹, John Deep². ¹Auburn University, ²US AFRL

RUL estimations of SAC305 solder PCB's under different conditions of temperature and vibration loads (p445) Pradeep Lall¹, Tony Thomas¹, Ken Blecker². ¹Auburn University, ²US ARMY CCDC Armament Center

SESSION M-13: SENSORS AND POWER PACKAGES

Session Chairs: Promod Chowdhury (Henkel), Jeff Suhling (Auburn University)

Smart server crash prediction in cloud service data center (p211)

Xingxing Liu¹, Yongzhan He¹, Hongmei Liu¹, Jiajun Zhang¹, Bin Liu¹, Xiangyu Peng², Jialiang Xu², Jun Zhang², Alex Zhou², Paul Sun², Kunye Zhu², Ahuja Nishi², Dayi Zhu², Ken Zhang². ¹Baidu, ²Intel Corp

Evaluation of switching loss and imbalance in multi-element power modules (p315) Ryotaro Yoshikawa, Tomohiro Shibuya, Sho Teradaira, Qiang Yu. Yokohama National University

Analysis of temperature variation influence on capacitance inertial sensors parameters (p339) Jacek Nazdrowicz, Andrzej Napieralski. Lodz University of Technology

Thermo-mechanical reliability design considerations of 3D-integrated SiC power device package (p347) Patrick McCluskey¹, He Yun¹, Clifton Buxbaum¹, Sevket Yuruker¹, Raphael Mandel¹, Michael Ohadi¹, Yongwan Park¹, Shiladri Chakraborty¹, Alireza Khaligh¹, Laureen Boteler², Miguel Hinojosa². ¹University of Maryland, ²US Army Research Laboratory

SESSION M-14: RELIABILITY OF RESTRAINT MECHANISMS

Session Chairs: Reza Ghaffarian (Jet Propulsion Laboratory)

A memory RAS system design and engineering practice in high temperature ambient data center (p215) Aili Yao¹, JinFeng Li¹, Fengqian Wang¹, Jie Zhao¹, Hongmei Liu¹, Jiajun Zhang¹, Jun Zhang², Alex Zhou², Youquan Song², Jialiang Xu², Paul Sun², Kunye Zhu², Nishi Ahuja², Dayi Zhu², Sean Kuo². ¹Baidu, ²Intel Corp

Effect of long term isothermal exposure on underfill material properties (p430)

Pradeep Lall, Madhu Kasturi, Yunli Zhang, Haotian Wu, Ed Davis. Auburn University

Effect of thermal aging on the interface fracture toughness of the PCB-UF interface (p432) Pradeep Lall¹, Padmanava Choudhary¹, Jeff Suhling¹, Jaimal Williamson². ¹Auburn University, ²Texas Instruments

The degradation mechanisms of underfills subjected to high temperature long term aging (p441)

Pradeep Lall¹, Yunli Zhang¹, Jaimal Williamson². ¹Auburn University, ²Texas Instruments

LAST YEAR'S BEST PAPERS (ITherm 2019)

COMPONENT-LEVEL THERMAL MANAGEMENT TRACK			
BEST PAPER		OUTSTANDING PAPER	
Optimal Filler Sizes for Thermal Interface Materials Piyas Chowdhury, Kamal Sikka, Alfred Grill, and Dishit P. Parekh		Micro-Scale Nozzled Jet Heat Transfer Distributions and Flow Field Entrainment Effects Directly on Die Prabhakar Subrahmanyam, and Arun Krishnamoorthy	
SYSTEM-LEVEL THERMAL MANAGE	MENT TRACK		
BEST PAPER		OUTSTANDING PAPER	
A Single Flexible Cold Plate Cools Multiple Devices Shurong Tian, Todd Takken, Mark Shultz, Chris Marroquin, Vic Mahaney, Yuan Yao, Michael J Ellsworth Jr, Anil Yuksel, and Paul Coteus EMERGING TECHNOLOGIES AND FUNDAMENTALS		Dynamic Radiative Thermal Management by Crumpled Graphene Anirudh Krishna, Jin Myung Kim, Juyoung Leem, Michael Cai Wang, SungWoo Nam, and Jaeho Lee 5 TRACK	
BEST PAPER	OUTSTANDING	G PAPER (TIE)	
Investigation of Thermal Metamaterials Based on Nanoporous Silicon Using Ray Tracing and Einite Element	Performance Ch Exchanger for A Farah Singer, An	aaracterization of a Novel Cross-Media Composite Heat ir-to-Liquid Applications Martinus Arie, David Hymas, nir Shooshtari, and Michael Ohadi	
Simulations Ziqi Yu, Zongqing Ren, and Jaeho Lee	A Measurement Technique for Thermal Conductivity Characterization of Ultra- High Molecular Weight Polyethylene Yarns Using High- Resolution Infrared Microscopy Aaditya Candadai, Justin Weibel, and Amy Marconnet		
MECHANICS AND RELIABILITY TRA	СК		
BEST PAPER		OUTSTANDING PAPER	

Comparisons of Solder Joints Fatigue Life Predictions and Several Long-Term Testing Results

Rainer Dudek, Kerstin Kreyssig, Sven Rzepka, Michael Novak, Wolfgang Gruebl, Peter Fruehauf, and Andreas Weigert

OUTSTANDING PAPER

Effects of Solder Mask Application Method on the **Reliability of an Automotive Flip Chip PBGA** Microcontroller

A R Nazmus Sakib, Richard S Lai, and Sandeep Shantaram

ITherm 2020 BEST PAPER AWARDS

Committee Members: Prof. Mehmet Arik (Özyeğin University), Prof. Mehdi Asheghi (Stanford University), Prof. Christopher Bailey (University of Greenwich), Prof. Cemal Basaran (SUNY Buffalo), Prof. Sushil H. Bhavnani (Auburn University), Prof. Kuo-Ning Chiang (National Tsing Hua University), Dr. Victor A. Chiriac (Global Cooling Technology Group), Dr. Krishna Darbha (Microsoft Corp.), Dr. Peter deBock (General Electric Research), Dr. M. Baris Dogruoz (CISCO Corp.), Prof. Joshua Gess (Oregon State University), Dr. Przemyslaw J. Gromala (Robert Bosch GmbH), Dr. Ashish Gupta (Intel Corp.), Prof. Marc S. Hodes (Tufts University), Dr. Madhusudhan Iyengar (Google), Prof. Yogendra K. Joshi (Georgia Institute of Technology, Committee Chair), Dr. Ravi Mahajan (Intel Corp.), Prof. Tim Persoons (Trinity College Dublin), Dr. Koneru Ramakrishna (Thermal Consultant, Committee Co-Chair), Prof. Roger Schmidt (Syracuse University), Prof. Amir H. Shooshtari (University of Maryland), Dr. Kamak Sikka (IBM Corp.), Prof. Jeffrey Suhling (Auburn University, Committee Co-Chair).

LAST YEAR'S BEST POSTERS (ITherm 2019)

BEST OVERALL POSTER

Effect of Surface Finish on The Fatigue Behavior of Bi-based Solder Joints Sinan Su, Auburn University

COMPONENT-LEVEL THERMAL MANAGEMENT TRACK

BEST POSTER	OUTSTANDING POSTER
A Metamodeling Approach for Optimization of Manifold Microchannel Systems for High Flux Cooling	Effect of Filler Configuration on the Effective Thermal Conductivity of Polymer Composites
Applications	Debraliz Isaac Aragones, Purdue University

Sevket Umut Yuruker, University of Maryland

SYSTEM-LEVEL THERMAL MANAGEMENT TRACK	
BEST POSTER	OUTSTANDING POSTER
Heat Transfer and Pressure Drop Performance of Additively Manufactured Plastic Heat Sinks For Low- Weight Directed Cooling Integration For Power	Two-Phase Cooling with Micropillar Evaporators: A New Approach to Remove Heat from Future High- Performance Chips
Electronics	Zihao Yuan, Boston University

Reece Whitt, University of Arkansas

EMERGING TECHNOLOGIES AND FUNDAMENTALS TRACK

BEST POSTER	OUTSTANDING POSTER
A Measurement Technique for Thermal Conductivity Characterization of Ultra-High Molecular Weight Polyethylene Yarns Using High-Resolution Infrared	Identifying Hot Spots in Electronics Packages with a Sensitivity-Coefficient Based Inverse Heat Conduction Method
Microscopy	Patrick Krane, Purdue University

Aaditya Anand Candadai, Purdue University

MECHANICS AND RELIABILITY TRACK	
BEST POSTER	OUTSTANDING POSTER
Investigation of Aging Induced Microstructural Changes in Doped SAC+X Solders	Effect of Shallow Charging on Flexible Power Source Capacity Subjected to Varying C-Rates and Extreme
Jing Wu, Auburn University	remperature

Ved Soni, Auburn University

PAPER REVIEWERS

Aakrati Jain Aaron Wemhoff Abdullah Fahim Abel Misrak A Deshpande A Tamraparni Adam Wilson Albraa Alsaati A Austin A Davoodabadi Alison Hoe A Battentier Amir Shooshtari A Niazmand Amrit Abrol A | Fernandez A Parahovnik Andrew Smith Anil Yuksel Anjali Pradeep Anto Raj Anurag Goyal A Raghupathy Asher Leff **Benoit Foisy Bin Ding** Brian Donovan Brian Rush Brian Werneke **Brice Rogie** Bryce Cox Chady Al Sayed C M Jha C Patel Chefu Su **Chen-Yuan Chung** Cheng Chen Chiara Falsetti C Duron C Mishra Corey Wilson D Agonafer **Daniel Moser Daniel Riegel** Danny Lohan **Darin Sharar** D Deisenroth David Esler

David Huitink Deepak Sharma D Agonafer D Kulkarni **Diganta Das Dishit Parekh** Dominic Groulx D P Ghosh **D** Demetriou **Edvin Cetegen** Eric Dede Evan Colgan **Evan Fleming** Fanghao Yang **Farah Singer** F Esmailie Felix Hirth Filippo Cataldo G Moreno Greg Natsui Guanglei Chen Hadi Keramati Hao Huang H Ganapathy H Subramanyan Harry Chau Herman Oprins H Kwon Hua Ye Indronil Ghosh Jayati Athavale Je-Young Chang Jeff Suhling Jiamin Ni Jing Wang Jiu Xu John Maddox John Yagielski Jorge Padilla Joshua Gess Jungkyu Park Jungwan Cho Justin Wang Justin Weibel Kadri Atli Kalind Barava K Mostafavi Kamal Sikka

K Muthusubramanian Pritish Parida Kartik Goyal Katie Rivera Kenneth C Marston Kewei Xiao K Ebrahimi **Koustav Sinha** Krishna Tunga K Valavala K Gluesenkamp Lauren Boteler Levi Campbell Liang Chen Liang Yin Luca Amalfi Mahdi Nabil Mahsa Ebrahim Manasa Sahini M Bergendahl M Hoffmeyer M Kostinovsky Mark Schultz M Jeronimo **M S Harrison** Matthew Ma M Mortazavi M Dicuangco M Deckard **Michael Fish** M R Shaeri M Tradat M ElHashimi M Farid M Abdelrehim M Hoque Nakul Kothari N D Ebrahimi Nicholas Neal **Olivier DANIEL** O Ghaffari P M Souare Pardeep Shahi P Shamberger Pedro Quintero Peter De Bock Peter Raad P Subrahmanyam Pradeep Lall

P Chowdhury P Gromala Qiuyun Wang **Q DUPUIS** Ratnesh Tiwari Rehan Khalid Reza Ghaffarian **Rinaldo Miorini** R Warzoha R Cardenas Saad Jajja S Deshmukh Sadegh Khalili S Donovan S Shantaram Satyam Saini Serdar Ozguc S Stoukatch Shailesh Joshi S Deshpande Shawn Putnam Shi Zeng Shohei Ohashi Shuai Shao S Goswani Shurong Tian S W Chang Soroor Karimi S Chowdhury S Gondipalli S Narumanchi S Allard S Khambati S Iruvanti S D Mahapatra **Tabeel Jacob** Tarek Gebrael Tarek Ragab T Germain **Timothy Fisher** Tiwei Wei Todd Salamon **T-S Spore** Tuhin Sinha **Uiash Shah** Vadim Gektin V Arghode

V BISSUEL V Rallabandi Varun Kashyap Veena Rao Vipul Ahuja Ward Glowinski Wei Ruan Wei Tian Wei Xing William Gerstler Xiang Zhang Xiangfei Yu Xiaojin Wei X Huang Xiaopeng QU Yi Xu Yin Hang **Yingying Wang** Yu-Wei Lin Yuanchen Hu Yueming Li Yuling Niu Yuqing Zhou Zachary Ferraro Zenghao Zhu Ziqi Yu

June 1 – 4, 2021

San Diego, CA, USA

20th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems

Call for Abstracts

The IEEE ITherm Conference is the leading international conference for scientific and engineering exploration of thermal, thermomechanical and emerging technology issues associated with electronic devices, packages, and systems. ITherm 2021 will be held along with the 71st ECTC at the Sheraton Hotel & Marina (San Diego, CA). Joint ITherm/ECTC registrations will be available at a significant discount. All abstracts are followed by full papers to be peer reviewed and published in the IEEE Xplore ITherm proceedings, with no technical presentation-only submissions. Student first authors will have the opportunity to apply for ITherm travel grants in order to participate in a Student Poster and Networking Session. ITherm 2021 will also feature keynotes by prominent speakers, vendor exhibits, panel discussions, invited technology talks, ECTC/ITherm joint networking events and short courses, an art-in-science exhibition, and a student design competition. Original papers are solicited in the following areas of interest:

Component-Level Thermal Management

- 3D Packaging & Heterogeneous Integration
- Package-Integrated Thermal Management
- Embedded Cooling
- Hotspot and Impingement Cooling
- Thermal Interface Materials and Heat Spreaders
- Thermoelectric and Peltier Devices
- Heat Pipes, Vapor Chambers and Thermosyphons
- Single / Two-Phase Cold Plates and Heat Sinks
- RF and Power Electronics
- LEDs, Photovoltaics, and Optoelectronics
- Thermal Management of Electric Machines
- Pulsed Power Dissipation

System-Level Thermal Management

- Air Cooling Techniques and Heat Exchangers
- Liquid Cooling Solutions
- Immersion Cooling and Refrigeration
- Pumps, Compressors, Fans and Blowers
- Phase Change Materials
- · Automotive, Batteries and Thermal Storage
- Mobile and Internet of Things
- Telecommunication Systems
- Space and Aerospace
- Data Center Thermal Management
- Thermal Management in Electric Aircraft
- Modeling of Complex Thermal Systems
- Next-Gen Electronics Systems Co-Design

Mechanics & Reliability

- Thermo-Mechanical Modeling and Simulation
- · Mechanics and Reliability of Solder Joints and Interconnects
- · Materials Characterization, Processing, and Models
- Failure Mechanics, Fatigue, and Damage Modeling
- Measurement of Deformations, Strains and Stresses
- Shock, Drop and Vibrational Analysis
- TSV / 3D Reliability and Packaging
- · Mechanics in Assembly and Manufacturing
- Applied Reliability and Failure Analysis
- Process-Structure-Property Relations / Multi-Scale Analyses
- Accelerated Stress Testing and Modeling
- Lifetime Prognostics and Condition Monitoring

Emerging Technologies & Fundamentals

- Boiling, Evaporation, and Condensation
- Convection in Microchannels, Microgaps, and Jets
- · Pulsating / Oscillating and Non-Conventional Heat Pipes
- Nanoscale and Transistor-Level Thermal Transport
- Novel Materials and Fabrication Techniques
- Measurement and Diagnostic Techniques
- Numerical Methods, Nano-to-Macro Scale
- Experimental Methods, Nano-to-Macro Scale
- Prognostic Health Management and Reliability Analysis
- Wearable, Flexible, and Printed Electronics
- Additive Manufacturing
- Silicon Fabrication for Thermal Management Devices
- Predictive Analytics and Machine Learning

ITherm provides an opportunity for industrial and university participation in the form of financial support to ITherm 2021. All contributors will be given strong recognition both onsite and in the conference materials.

Join the ITherm LinkedIn Group https://www.linkedin.com/groups/8650280 Program Inquiries To:

Dr. Dustin W. Demetriou, Program Chair, dwdemetr@us.ibm.com Prof. Satish Kumar, Vice Program Chair, satish.kumar@me.gatech.edu

Prof. Justin A. Weibel, General Chair, jaweibel@purdue.edu ITherm Website: <u>https://ieee-itherm.net/</u>

